717 research outputs found

    Time series irreversibility: a visibility graph approach

    Get PDF
    We propose a method to measure real-valued time series irreversibility which combines two differ- ent tools: the horizontal visibility algorithm and the Kullback-Leibler divergence. This method maps a time series to a directed network according to a geometric criterion. The degree of irreversibility of the series is then estimated by the Kullback-Leibler divergence (i.e. the distinguishability) between the in and out degree distributions of the associated graph. The method is computationally effi- cient, does not require any ad hoc symbolization process, and naturally takes into account multiple scales. We find that the method correctly distinguishes between reversible and irreversible station- ary time series, including analytical and numerical studies of its performance for: (i) reversible stochastic processes (uncorrelated and Gaussian linearly correlated), (ii) irreversible stochastic pro- cesses (a discrete flashing ratchet in an asymmetric potential), (iii) reversible (conservative) and irreversible (dissipative) chaotic maps, and (iv) dissipative chaotic maps in the presence of noise. Two alternative graph functionals, the degree and the degree-degree distributions, can be used as the Kullback-Leibler divergence argument. The former is simpler and more intuitive and can be used as a benchmark, but in the case of an irreversible process with null net current, the degree-degree distribution has to be considered to identifiy the irreversible nature of the series.Comment: submitted for publicatio

    The dynamics of norm change in the cultural evolution of language

    Get PDF
    What happens when a new social convention replaces an old one? While the possible forces favoring norm change - such as institutions or committed activists - have been identified since a long time, little is known about how a population adopts a new convention, due to the diffculties of finding representative data. Here we address this issue by looking at changes occurred to 2,541 orthographic and lexical norms in English and Spanish through the analysis of a large corpora of books published between the years 1800 and 2008. We detect three markedly distinct patterns in the data, depending on whether the behavioral change results from the action of a formal institution, an informal authority or a spontaneous process of unregulated evolution. We propose a simple evolutionary model able to capture all the observed behaviors and we show that it reproduces quantitatively the empirical data. This work identifies general mechanisms of norm change and we anticipate that it will be of interest to researchers investigating the cultural evolution of language and, more broadly, human collective behavior

    Feigenbaum graphs: a complex network perspective of chaos

    Get PDF
    The recently formulated theory of horizontal visibility graphs transforms time series into graphs and allows the possibility of studying dynamical systems through the characterization of their associated networks. This method leads to a natural graph-theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics. We support our claim via the case study of the period-doubling and band-splitting attractor cascades that characterize unimodal maps. We provide a universal analytical description of this classic scenario in terms of the horizontal visibility graphs associated with the dynamics within the attractors, that we call Feigenbaum graphs, independent of map nonlinearity or other particulars. We derive exact results for their degree distribution and related quantities, recast them in the context of the renormalization group and find that its fixed points coincide with those of network entropy optimization. Furthermore, we show that the network entropy mimics the Lyapunov exponent of the map independently of its sign, hinting at a Pesin-like relation equally valid out of chaos.Comment: Published in PLoS ONE (Sep 2011

    The Visibility Graph: a new method for estimating the Hurst exponent of fractional Brownian motion

    Full text link
    Fractional Brownian motion (fBm) has been used as a theoretical framework to study real time series appearing in diverse scientific fields. Because its intrinsic non-stationarity and long range dependence, its characterization via the Hurst parameter H requires sophisticated techniques that often yield ambiguous results. In this work we show that fBm series map into a scale free visibility graph whose degree distribution is a function of H. Concretely, it is shown that the exponent of the power law degree distribution depends linearly on H. This also applies to fractional Gaussian noises (fGn) and generic f^(-b) noises. Taking advantage of these facts, we propose a brand new methodology to quantify long range dependence in these series. Its reliability is confirmed with extensive numerical simulations and analytical developments. Finally, we illustrate this method quantifying the persistent behavior of human gait dynamics.Comment: 5 pages, submitted for publicatio

    Description of stochastic and chaotic series using visibility graphs

    Full text link
    Nonlinear time series analysis is an active field of research that studies the structure of complex signals in order to derive information of the process that generated those series, for understanding, modeling and forecasting purposes. In the last years, some methods mapping time series to network representations have been proposed. The purpose is to investigate on the properties of the series through graph theoretical tools recently developed in the core of the celebrated complex network theory. Among some other methods, the so-called visibility algorithm has received much attention, since it has been shown that series correlations are captured by the algorithm and translated in the associated graph, opening the possibility of building fruitful connections between time series analysis, nonlinear dynamics, and graph theory. Here we use the horizontal visibility algorithm to characterize and distinguish between correlated stochastic, uncorrelated and chaotic processes. We show that in every case the series maps into a graph with exponential degree distribution P (k) ~ exp(-{\lambda}k), where the value of {\lambda} characterizes the specific process. The frontier between chaotic and correlated stochastic processes, {\lambda} = ln(3/2), can be calculated exactly, and some other analytical developments confirm the results provided by extensive numerical simulations and (short) experimental time series

    Critical behavior of a Ginzburg-Landau model with additive quenched noise

    Get PDF
    We address a mean-field zero-temperature Ginzburg-Landau, or \phi^4, model subjected to quenched additive noise, which has been used recently as a framework for analyzing collective effects induced by diversity. We first make use of a self-consistent theory to calculate the phase diagram of the system, predicting the onset of an order-disorder critical transition at a critical value {\sigma}c of the quenched noise intensity \sigma, with critical exponents that follow Landau theory of thermal phase transitions. We subsequently perform a numerical integration of the system's dynamical variables in order to compare the analytical results (valid in the thermodynamic limit and associated to the ground state of the global Lyapunov potential) with the stationary state of the (finite size) system. In the region of the parameter space where metastability is absent (and therefore the stationary state coincide with the ground state of the Lyapunov potential), a finite-size scaling analysis of the order parameter fluctuations suggests that the magnetic susceptibility diverges quadratically in the vicinity of the transition, what constitutes a violation of the fluctuation-dissipation relation. We derive an effective Hamiltonian and accordingly argue that its functional form does not allow to straightforwardly relate the order parameter fluctuations to the linear response of the system, at odds with equilibrium theory. In the region of the parameter space where the system is susceptible to have a large number of metastable states (and therefore the stationary state does not necessarily correspond to the ground state of the global Lyapunov potential), we numerically find a phase diagram that strongly depends on the initial conditions of the dynamical variables.Comment: 8 figure

    Canonical horizontal visibility graphs are uniquely determined by their degree sequence

    Get PDF
    Horizontal visibility graphs (HVGs) are graphs constructed in correspondence with number sequences that have been introduced and explored recently in the context of graph-theoretical time series analysis. In most of the cases simple measures based on the degree sequence (or functionals of these such as entropies over degree and joint degree distributions) appear to be highly informative features for automatic classification and provide nontrivial information on the associated dynam- ical process, working even better than more sophisticated topological metrics. It is thus an open question why these seemingly simple measures capture so much information. Here we prove that, under suitable conditions, there exist a bijection between the adjacency matrix of an HVG and its degree sequence, and we give an explicit construction of such bijection. As a consequence, under these conditions HVGs are unigraphs and the degree sequence fully encapsulates all the information of these graphs, thereby giving a plausible reason for its apparently unreasonable effectiveness

    Phase transition in a stochastic prime number generator

    Full text link
    We introduce a stochastic algorithm that acts as a prime number generator. The dynamics of such algorithm gives rise to a continuous phase transition which separates a phase where the algorithm is able to reduce a whole set of integers into primes and a phase where the system reaches a frozen state with low prime density. We present both numerical simulations and an analytical approach in terms of an annealed approximation, by means of which the data are collapsed. A critical slowing down phenomenon is also outlined.Comment: accepted in PRE (Rapid Comm.

    Quasiperiodic graphs: structural design, scaling and entropic properties

    Get PDF
    A novel class of graphs, here named quasiperiodic, are constructed via application of the Horizontal Visibility algorithm to the time series generated along the quasiperiodic route to chaos. We show how the hierarchy of mode-locked regions represented by the Farey tree is inherited by their associated graphs. We are able to establish, via Renormalization Group (RG) theory, the architecture of the quasiperiodic graphs produced by irrational winding numbers with pure periodic continued fraction. And finally, we demonstrate that the RG fixed-point degree distributions are recovered via optimization of a suitably defined graph entropy
    corecore