research

The Visibility Graph: a new method for estimating the Hurst exponent of fractional Brownian motion

Abstract

Fractional Brownian motion (fBm) has been used as a theoretical framework to study real time series appearing in diverse scientific fields. Because its intrinsic non-stationarity and long range dependence, its characterization via the Hurst parameter H requires sophisticated techniques that often yield ambiguous results. In this work we show that fBm series map into a scale free visibility graph whose degree distribution is a function of H. Concretely, it is shown that the exponent of the power law degree distribution depends linearly on H. This also applies to fractional Gaussian noises (fGn) and generic f^(-b) noises. Taking advantage of these facts, we propose a brand new methodology to quantify long range dependence in these series. Its reliability is confirmed with extensive numerical simulations and analytical developments. Finally, we illustrate this method quantifying the persistent behavior of human gait dynamics.Comment: 5 pages, submitted for publicatio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020