301 research outputs found

    Electrophoresis of positioned nucleosomes

    Get PDF
    We present in this paper an original approach to compute the electrophoretic mobility of rigid nucleo-protein complexes like nucleosomes. This model allows to address theoretically the influence of complex position along DNA, as well as wrapped length of DNA on the electrophoretic mobility of the complex. The predictions of the model are in qualitative agreement with experimental results on mononucleosomes assembled on short DNA fragments (<400bp). Influence of additional experimental parameters like gel concentration, ionic strength, effective charges is also discussed in the framework of the model, and is found to be qualitatively consistent with experiments when available. Based on the present model, we propose a simple semi-empirical formula describing positioning of nucleosomes as seen through electrophoresis.Comment: to appear in Biophys. J. 29 page

    Handling Planned and Unplanned Missing Data in a Longitudinal Study

    Get PDF
    While analyzing data, researchers are often faced with missing values. This is especially common in longitudinal studies in which participants might skip assessments. Unwanted missing data can introduce bias in the results and should thus be handled appropriately. However, researchers can sometimes want to include missing values in their data collection design to reduce its length and cost, a method called ``planned missingness.'' This paper review the recommended practices for handling both planned and unplanned missing data, with a focus on longitudinal studies. The current guidelines suggest to either use Full Information Maximum Likelihood or Multiple Imputation. Those techniques are illustrated with R code in the context of a longitudinal study with a representative Canadian sample on the psychological impacts of the COVID-19 pandemic

    Understanding and Representing Natural Language Meaning

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryOffice of Naval Research / N00014-75-C-061

    Theoretical analysis of the mechanisms of a gender differentiation in the propensity for orthostatic intolerance after spaceflight

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A tendency to develop reentry orthostasis after a prolonged exposure to microgravity is a common problem among astronauts. The problem is 5 times more prevalent in female astronauts as compared to their male counterparts. The mechanisms responsible for this gender differentiation are poorly understood despite many detailed and complex investigations directed toward an analysis of the physiologic control systems involved.</p> <p>Methods</p> <p>In this study, a series of computer simulation studies using a mathematical model of cardiovascular functioning were performed to examine the proposed hypothesis that this phenomenon could be explained by basic physical forces acting through the simple common anatomic differences between men and women. In the computer simulations, the circulatory components and hydrostatic gradients of the model were allowed to adapt to the physical constraints of microgravity. After a simulated period of one month, the model was returned to the conditions of earth's gravity and the standard postflight tilt test protocol was performed while the model output depicting the typical vital signs was monitored.</p> <p>Conclusions</p> <p>The analysis demonstrated that a 15% lowering of the longitudinal center of gravity in the anatomic structure of the model was all that was necessary to prevent the physiologic compensatory mechanisms from overcoming the propensity for reentry orthostasis leading to syncope.</p

    Knüpfung von CC-Bindungen durch Addition von Carbenium-Ionen an Alkene. Kinetik und Mechanismus

    Get PDF
    Die Addition von Carbenium-Ionen an CC-Doppelbindungen, ein Schlüsselschritt zahlreicher Synthesen in der Organischen und Makromolekularen Chemie, wird am Beispiel der Lewis-Säure-induzierten Umsetzungen von Alkylchloriden mit Alkenen mechanistisch analysiert. Stereochemische und kinetische Untersuchungen deuten einen wenig verbrückten, Produktähnlichen Übergangszustand an. Umlagerungen der im Additionsschritt erzeugten Carbenium-Ionen lassen sich durch Zusätze von Salzen mit nucleophilen Gegenionen zurückdrängen. Die Thermodynamik der Additionsreaktionen wird analysiert, und es wird gezeigt, unter welchen Voraussetzungen mit deren Umkehr, d.h. mit Grob-Fragmentierungen zu rechnen ist. Kinetische Untersuchungen über Struktureinflüsse auf die Reaktivität von Carbenium-Ionen und von Alkenen führen zu Mehrparameter-Gleichungen, die die Voraussage von Geschwindigkeitskonstanten ermöglichen. Reaktivitäts-Selektivitäts-Beziehungen über einen Reaktivitätsbereich von acht Zehnerpotenzen zeigen, daß die Struktur des Übergangszustands nur durch Substituenten-Variation in unmittelbarer Nähe des Reaktionszentrums verändert wird

    Therapeutic Benefit of Radial Optic Neurotomy in a Rat Model of Glaucoma

    Get PDF
    Radial optic neurotomy (RON) has been proposed as a surgical treatment to alleviate the neurovascular compression and to improve the venous outflow in patients with central retinal vein occlusion. Glaucoma is characterized by specific visual field defects due to the loss of retinal ganglion cells and damage to the optic nerve head (ONH). One of the clinical hallmarks of glaucomatous neuropathy is the excavation of the ONH. The aim of this work was to analyze the effect of RON in an experimental model of glaucoma in rats induced by intracameral injections of chondroitin sulfate (CS). For this purpose, Wistar rats were bilaterally injected with vehicle or CS in the eye anterior chamber, once a week, for 10 weeks. At 3 or 6 weeks of a treatment with vehicle or CS, RON was performed by a single incision in the edge of the neuro-retinal ring at the nasal hemisphere of the optic disk in one eye, while the contralateral eye was submitted to a sham procedure. Electroretinograms (ERGs) were registered under scotopic conditions and visual evoked potentials (VEPs) were registered with skull-implanted electrodes. Retinal and optic nerve morphology was examined by optical microscopy. RON did not affect the ocular hypertension induced by CS. In eyes injected with CS, a significant decrease of retinal (ERG a- and b-wave amplitude) and visual pathway (VEP N2-P2 component amplitude) function was observed, whereas RON reduced these functional alterations in hypertensive eyes. Moreover, a significant loss of cells in the ganglion cell layer, and Thy-1-, NeuN- and Brn3a- positive cells was observed in eyes injected with CS, whereas RON significantly preserved these parameters. In addition, RON preserved the optic nerve structure in eyes with chronic ocular hypertension. These results indicate that RON reduces functional and histological alterations induced by experimental chronic ocular hypertension

    Variation in MSRA Modifies Risk of Neonatal Intestinal Obstruction in Cystic Fibrosis

    Get PDF
    Meconium ileus (MI), a life-threatening intestinal obstruction due to meconium with abnormal protein content, occurs in approximately 15 percent of neonates with cystic fibrosis (CF). Analysis of twins with CF demonstrates that MI is a highly heritable trait, indicating that genetic modifiers are largely responsible for this complication. Here, we performed regional family-based association analysis of a locus that had previously been linked to MI and found that SNP haplotypes 5′ to and within the MSRA gene were associated with MI (P = 1.99×10−5 to 1.08×10−6; Bonferroni P = 0.057 to 3.1×10−3). The haplotype with the lowest P value showed association with MI in an independent sample of 1,335 unrelated CF patients (OR = 0.72, 95% CI [0.53–0.98], P = 0.04). Intestinal obstruction at the time of weaning was decreased in CF mice with Msra null alleles compared to those with wild-type Msra resulting in significant improvement in survival (P = 1.2×10−4). Similar levels of goblet cell hyperplasia were observed in the ilea of the Cftr−/− and Cftr−/−Msra−/− mice. Modulation of MSRA, an antioxidant shown to preserve the activity of enzymes, may influence proteolysis in the developing intestine of the CF fetus, thereby altering the incidence of obstruction in the newborn period. Identification of MSRA as a modifier of MI provides new insight into the biologic mechanism of neonatal intestinal obstruction caused by loss of CFTR function

    A Survey of New Temperature-Sensitive, Embryonic-Lethal Mutations in C. elegans: 24 Alleles of Thirteen Genes

    Get PDF
    To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci
    corecore