65 research outputs found

    Microbial community of the deep-sea brine Lake <em>Kryos </em>seawater-brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA

    Get PDF
    Within the complex of deep, hypersaline anoxic lakes (DHALs) of the Mediterranean Ridge we identified a new, unexplored DHAL and named it "Lake Kryos" after a nearby depression. This lake is filled with MgCl2-rich, athalassohaline brine (salinity >470 practical salinity units), presumably formed by the dissolution of Messinian bischofite. Compared to the DHAL Discovery, it contains elevated concentrations of kosmotropic sodium and sulfate ions, which are capable of reducing the net chaotropicily of MgCl2-rich solutions. The brine of Lake Kryos may therefore be biologically permissive at MgCl2 concentrations previously considered incompatible with life. We characterized the microbiology of the seawater-Kryos brine interface and managed to recover mRNA from the 2.27-3.03 M MgCl2 layer (equivalent to 0.747-0.631 water-activity) thereby expanding the established chaotropicity window-for-life. The primary bacterial taxa present there were KB1 candidate division and DHAL-specific group of organisms, distantly related to Desulfohalobium. Two euryarchaeal candidate divisions MSBL1 and HC1, detected in minority in the overlaying layers, accounted for more than 85% of the rRNA-containing archaeal clones analyzed in 2.27-3.03 M MgCl2 layer. These findings shed light on the plausibility of life in highly chaotropic environments, geochemical windows for microbial extremophiles, and have implications for habitability elsewhere in the Solar System

    Prebiotic and probiotic agents enhance antibody-based immune responses to Salmonella Typhimurium infection in pigs

    Get PDF
    Salmonellosis causes significant economic losses to the pig industry and contaminated pork products are an important source of Salmonella for humans. The EU ban on the use of antibiotic growth promoters in pig production, and the emergence of antibiotic resistance has meant there is a pressing need for alternative control strategies for pathogenic bacteria such as S. Typhimurium in pigs. Here, we determined the effects of prebiotic, probiotic and synbiotic diet regimes on antibody responses to oral Salmonella challenge of pigs. The data demonstrate that the inclusion of the probiotic Lactobacillus plantarum B2984 in the diet of piglets (∼1 × 1010 cfu/animal/day) enhanced serum IgM (P<0.001), IgG (P=0.001) and IgA (P=0.039) responses to S. Typhimurium infection including cross-reacting antibodies to S. Enteritidis. Similarly, inclusion of the prebiotic lactulose at 1% (w/w) of the feed on a daily basis in the diet enhanced serum IgM (P=0.010), IgG (P=0.004) and IgA (P=0.046) responses to S. Typhimurium infection and also cross-reacting antibodies to S. Enteritidis. Inclusion of both additives in the synbiotic diet also elicited an enhanced immune response with IgM (P=0.009) and IgG (P=0.046) levels being increased, however a significant interaction of the pre and probiotics was observed when considering the immune responses to S. Typhimurium (IgM P=0.004; IgG and IgA, P<0.001 for interaction). With respect to immune responses, the effects of pre or probiotic administration were the same or reduced in the synbiotic diet compared to when used in isolation. The data support the use of Lactobacillus plantarum B2984 or lactulose as strategies to contribute to the protection of weaned piglets from zoonotic bacterial pathogens, but caution must be taken when combining dietary supplements as combinations can interact

    Breed and adaptive response modulate bovine peripheral blood cells’ transcriptome

    Get PDF
    Background: Adaptive response includes a variety of physiological modifications to face changes in external or internal conditions and adapt to a new situation. The acute phase proteins (APPs) are reactants synthesized against environmental stimuli like stress, infection, inflammation. Methods: To delineate the differences in molecular constituents of adaptive response to the environment we performed the whole-blood transcriptome analysis in Italian Holstein (IH) and Italian Simmental (IS) breeds. For this, 663 IH and IS cows from six commercial farms were clustered according to the blood level of APPs. Ten extreme individuals (five APP+ and APP- variants) from each farm were selected for the RNA-seq using the Illumina sequencing technology. Differentially expressed (DE) genes were analyzed using dynamic impact approach (DIA) and DAVID annotation clustering. Milk production data were statistically elaborated to assess the association of APP+ and APP- gene expression patterns with variations in milk parameters. Results: The overall de novo assembly of cDNA sequence data generated 13,665 genes expressed in bovine blood cells. Comparative genomic analysis revealed 1,152 DE genes in the comparison of all APP+ vs. all APP- variants; 531 and 217 DE genes specific for IH and IS comparison respectively. In all comparisons overexpressed genes were more represented than underexpressed ones. DAVID analysis revealed 369 DE genes across breeds, 173 and 73 DE genes in IH and IS comparison respectively. Among the most impacted pathways for both breeds were vitamin B6 metabolism, folate biosynthesis, nitrogen metabolism and linoleic acid metabolism. Conclusions: Both DIA and DAVID approaches produced a high number of significantly impacted genes and pathways with a narrow connection to adaptive response in cows with high level of blood APPs. A similar variation in gene expression and impacted pathways between APP+ and APP- variants was found between two studied breeds. Such similarity was also confirmed by annotation clustering of the DE genes. However, IH breed showed higher and more differentiated impacts compared to IS breed and such particular features in the IH adaptive response could be explained by its higher metabolic activity. Variations of milk production data were significantly associated with APP+ and APP- gene expression patterns

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Expression of selected genes isolated from whole blood, liver and obex in lambs with experimental classical scrapie and healthy controls, showing a systemic innate immune response at the clinical end-stage

    Get PDF
    Abstract Background Incubation period, disease progression, pathology and clinical presentation of classical scrapie in sheep are highly dependent on PRNP genotype, time and route of inoculation and prion strain. Our experimental model with pre-colostrum inoculation of homozygous VRQ lambs has shown to be an effective model with extensive PrPSc dissemination in lymphatic tissue and a short incubation period with severe clinical disease. Serum protein analysis has shown an elevation of acute phase proteins in the clinical stages of this experimental model, and here, we investigate changes in gene expression in whole blood, liver and brain. Results The animals in the scrapie group showed severe signs of illness 22 weeks post inoculation necessitating euthanasia at 23 weeks post inoculation. This severe clinical presentation was accompanied by changes in expression of several genes. The following genes were differentially expressed in whole blood: TLR2, TLR4, C3, IL1B, LF and SAA, in liver tissue, the following genes differentially expressed: TNF-α, SAA, HP, CP, AAT, TTR and TF, and in the brain tissue, the following genes were differentially expressed: HP, CP, ALB and TTR. Conclusions We report a strong and evident transcriptional innate immune response in the terminal stage of classical scrapie in these animals. The PRNP genotype and time of inoculation are believed to contribute to the clinical presentation, including the extensive dissemination of PrPSc throughout the lymphatic tissue

    Perspectives on the use of transcriptomics to advance biofuels

    Get PDF
    As a field within the energy research sector, bioenergy is continuously expanding. Although much has been achieved and the yields of both ethanol and butanol have been improved, many avenues of research to further increase these yields still remain. This review covers current research related with transcriptomics and the application of this high-throughput analytical tool to engineer both microbes and plants with the penultimate goal being better biofuel production and yields. The initial focus is given to the responses of fermentative microbes during the fermentative production of acids, such as butyric acid, and solvents, including ethanol and butanol. As plants offer the greatest natural renewable source of fermentable sugars within the form of lignocellulose, the second focus area is the transcriptional responses of microbes when exposed to plant hydrolysates and lignin-related compounds. This is of particular importance as the acid/base hydrolysis methods commonly employed to make the plant-based cellulose available for enzymatic hydrolysis to sugars also generates significant amounts of lignin-derivatives that are inhibitory to fermentative bacteria and microbes. The article then transitions to transcriptional analyses of lignin-degrading organisms, such as Phanerochaete chrysosporium, as an alternative to acid/base hydrolysis. The final portion of this article will discuss recent transcriptome analyses of plants and, in particular, the genes involved in lignin production. The rationale behind these studies is to eventually reduce the lignin content present within these plants and, consequently, the amount of inhibitors generated during the acid/base hydrolysis of the lignocelluloses. All four of these topics represent key areas where transcriptomic research is currently being conducted to identify microbial genes and their responses to products and inhibitors as well as those related with lignin degradation/formation.clos

    Oral microbes and the formation of cerebral abscesses: a single-centre retrospective study.

    No full text
    OBJECTIVE: Intracranial abscesses are relatively uncommon, but can result in significant mortality and morbidity. Whilst many potential causes of brain abscesses are recognised, in many cases the origin of infection remains clinically unidentified. Our objective was to investigate the role of bacteria found in the oral cavity in the development of brain abscesses. METHODS: A retrospective analysis was performed using data from 87 patients admitted to a single UK neurosurgical unit with brain abscesses over a 16-year period. Using microbiological data obtained from abscess sampling and peripheral cultures, species of bacteria were categorised in patients where no primary source of infection was identified (NSI) for their brain abscess (n=52), or where an infective source (ISI) was identified. The microbiological data was then screened to identify common oral bacteria in each group. RESULTS: Brain abscesses from the ISI group (n=35) demonstrated a significantly lower preponderance of oral bacteria (n=8), than the NSI group (n=29) (p<0.05). Brain abscesses from the NSI group also had significantly higher counts of Streptococcus Anginosus compared to ISI (p<0.05), with brain abscesses being most common in the frontal and parietal lobes for both ISI and NSI. CONCLUSIONS: These findings suggest that the oral cavity could be considered as a source of occult infection in cases of brain abscess where no clear cause has been identified. Future studies should include oral screening and microbiome analysis to better understand the mechanisms involved and develop approaches for prevention. CLINICAL SIGNIFICANCE STATEMENT: Oral bacteria may be an under-recognised cause of brain abscesses. Careful review of oral health in brain abscess patients may help establish causation, particularly in patients with no cause for their abscess identified. Good levels of oral health may help prevent the development of brain abscesses in some individuals
    corecore