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Abstract

Background: Adaptive response includes a variety of physiological modifications to face changes in external or
internal conditions and adapt to a new situation. The acute phase proteins (APPs) are reactants synthesized against
environmental stimuli like stress, infection, inflammation.

Methods: To delineate the differences in molecular constituents of adaptive response to the environment we
performed the whole-blood transcriptome analysis in Italian Holstein (IH) and Italian Simmental (IS) breeds. For
this, 663 IH and IS cows from six commercial farms were clustered according to the blood level of APPs. Ten
extreme individuals (five APP+ and APP- variants) from each farm were selected for the RNA-seq using the Illumina
sequencing technology. Differentially expressed (DE) genes were analyzed using dynamic impact approach (DIA)
and DAVID annotation clustering. Milk production data were statistically elaborated to assess the association of
APP+ and APP- gene expression patterns with variations in milk parameters.

Results: The overall de novo assembly of cDNA sequence data generated 13,665 genes expressed in bovine blood
cells. Comparative genomic analysis revealed 1,152 DE genes in the comparison of all APP+ vs. all APP- variants; 531
and 217 DE genes specific for IH and IS comparison respectively. In all comparisons overexpressed genes were
more represented than underexpressed ones. DAVID analysis revealed 369 DE genes across breeds, 173 and 73
DE genes in IH and IS comparison respectively. Among the most impacted pathways for both breeds were vitamin
B6 metabolism, folate biosynthesis, nitrogen metabolism and linoleic acid metabolism.

Conclusions: Both DIA and DAVID approaches produced a high number of significantly impacted genes and
pathways with a narrow connection to adaptive response in cows with high level of blood APPs. A similar variation
in gene expression and impacted pathways between APP+ and APP- variants was found between two studied
breeds. Such similarity was also confirmed by annotation clustering of the DE genes. However, IH breed showed
higher and more differentiated impacts compared to IS breed and such particular features in the IH adaptive
response could be explained by its higher metabolic activity. Variations of milk production data were significantly
associated with APP+ and APP- gene expression patterns.
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Background
In the context of adaptation, stress response is an im-
portant neurobehavioral and physiological reaction and
it is essential for the survival of living organisms. In
response to a stressor, the body orchestrates changes in
brain activity followed by the secretion of “stress medi-
ators”, including cytokines, metabolic hormones and
corticosteroids [1].
The body’s response during the first stage of stress is

known as fight-or-flight response. It includes the activa-
tion of sympathetic nervous system and the stimulation
of the production of adrenaline and noradrenaline by
adrenal glands. These molecules increase the heart rate
and the glycemia and modify blood distribution to
supply greater levels of glucose to organs where they are
needed, like brain and skeletal muscles. Shortly after, the
hypothalamic-pituitary-adrenal (HPA) axis is activated
and releases corticosteroids (in particular adrenal gluco-
corticoids). In turn, these produce a negative feedback
onto immune cells and suppress further synthesis and
release of cytokines, thereby protecting the host from the
detrimental consequences of an overactive immune
response (e.g., tissue damage, autoimmunity, septic
shock) [2].
The long-term activation of the stress-response mech-

anisms may also cause irreversible damages, like cardio-
vascular diseases, immunosuppression, dysfunction of
digestive and reproductive systems, type-II diabetes mel-
litus, impairment of thyroid function, weakening and
loss of body lean mass [3, 4]. Such pre-pathological or
pathological consequences seriously affect not only the
efficiency of animal production and the quality of the
product, but undoubtedly reduce animal welfare.
During the acute phase reaction (APR), the body

mounts a multifactorial response trying to remove or
replace damaged tissues and one of the mechanisms
involved is the secretion of the so-called acute phase
proteins (APPs). The concentration of some APPs in-
creases several fold during the APR, while others, including
albumin, decreases as the liver switches the production of
proteins towards the synthesis of proteins required to deal
with the damage [5, 6].
In ruminants, APPs are very sensitive factors that allow

the early and precise detection of inflammation [7]. The
most frequently investigated proteins in cattle are: hapto-
globin (Hp), serum amyloid A (SAA), fibrinogen (Fb),
ceruloplasmin, α 1-antitrypsin and α 1-acid glycoprotein
(α1-AGP) [5, 8–10]. It is possible that the synthesis of
APPs in cattle is influenced by cortisol [11, 12], which is
the key effector molecule of the HPA axis and is recog-
nized as the physiological response to stress [13–16].
Stress response mechanisms in cattle are still not well

understood and the research is complicated by individual
differences in stress response [17]. Today, the investigation

of how dairy cattle adapt to intensive production is
particularly important, since the animal welfare is a grow-
ing public concern and stressed animals are less efficient,
producing less than predicted by their genetic potential
mostly due to a higher environmental impact.
Next-generation high-throughput RNA sequencing

technology (RNA-seq) is a recently-developed method
for discovering, profiling, and quantifying RNA tran-
scripts. Such approach is used to analyze the continu-
ally changing cellular transcriptome and might help
identifying gene patterns involved in adaptive response.
Applicability of RNA-seq for transcriptome analysis of
whole blood samples was already confirmed by many
research groups [18–20]. Among the most distinct ad-
vantages of RNA-seq over prior methods for mapping
and quantifying the transcriptome are unbiased whole-
transcriptome profiling, higher sensitivity and accurate
estimation of lowly expressed transcripts in peripheral
whole blood with or without globin depletion [20].
Up to date RNA-seq technique was highly applied for

the assessment of changes in blood transcript abun-
dance in response to stress events, pathogenic pro-
cesses, and specific physiological and metabolic statuses
in dairy cattle [19–22]. However, no study has compre-
hensively evaluated the adaptive response on molecular
changes in dairy cattle whole blood cell transcriptome
as an indicator of immune activity without the visible
environmental perturbations.
In this context, we used a whole-transcriptome ana-

lysis to understand if and how differential gene expres-
sion contributes to such a complex phenomenon as
adaptive response. Therefore, in the present research,
the transcriptome of blood cells was analyzed in se-
lected bovines belonging to Italian Holstein (IH) and
Italian Simmental (IS) breeds from six commercial
farms in Friuli-Venezia Giulia region, Italy. Cows were
clustered for blood APPs, plasma Zn, milk cortisol and
somatic cell count (SCC) in milk. The analysis included
RNA isolation from blood [23], sequencing by RNA-seq
with Illumina pipeline [24–27] and the use of the nor-
malized data for the identification of genes expression
of which is significantly associated to the adaptive re-
sponse to the undefined stress conditions. Genes and
metabolic pathways were further analyzed using the
dynamic impact approach (DIA) and DAVID online
software tool [28].

Methods
Animals and management
A total of 663 IH and IS cows from six commercial
farms in Friuli-Venezia Giulia region of Italy were in-
cluded in the experiment. All animals were kept under
the same feeding and management conditions and were
in the stage of lactation. Farm veterinary practitioner
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confirmed that all sampled animals passed the prelimin-
ary veterinary checkup, were clinically healthy and were
not under any treatments for at least 1 month before the
collection day. Composition of herds and characteristics
of animals included in the analysis are reported in the
Tables 1 and 2.
Farmers and farm veterinary practitioners gave an oral

informed consent to the study and had a copy of all the
data obtained from the laboratory analyses. All farms
involved in the present study adhere to a high standard
of veterinary care based on best practice manual under
the supervision of the official veterinary service. Sample
collection was approved by the Bioethics Committee of
the University of Udine.
Cows were housed in a free stall barn with cubicle

design and automated milking parlour. They were
milked twice a day, at approximately 12 h interval. Cows
had free access to water and were fed ad libitum twice a
day a total mixed ration (TMR) based on corn silage and
formulated to cover nutrient requirements [29]. TMR
was administered after each milking. To ensure that no
dietary variations occurred during the time window of
the study, the ration formulation and the offered amount
were recorded using registrations of the TMR mixed
feeder. In Table 3 are summarized composition, chem-
ical properties and nutritional values of the diet in the
six commercial farms.

Milk and blood sampling and assays
Milk was sampled on the day of the official record.
Coccygeal vein blood samples were collected just before
the morning milking and prior the feeding process. The
same collection protocol was used across all farms. Blood
was collected in PAXgene Blood RNA Tubes (PreAnalytiX

GmbH, Switzerland), frozen 4 h after the collection and
stored at -80 °C until the RNA isolation.
Prior to RNA isolation, blood samples were thawed

at +4 °C for at least 12 h. RNA was isolated according
to PAXgene Blood RNA Kit (PreAnalytiX GmbH,
Switzerland) protocol.
Blood biochemical parameters, i.e., total protein, albu-

min, urea, glucose, creatinine, total bilirubin, cholesterol,
AST/GOT (aspartate transaminase/glutamic oxaloacetic
transaminase), gGT (gamma-glutamyl transpeptidase),
zinc, ceruloplasmin, haptoglobin and paraoxonase were
assayed as described in Sgorlon et al. [30]. Milk compos-
ition data, i.e., fat and total protein percentage, casein,
urea, SCC and milk cortisol, were obtained from milk
samples collected the same day of blood sampling and are
described in Sgorlon et al. [31].

Clustering of animals
To identify animals differing in their adaptive response to
the environment, cows were clustered according to the
level of acute phase proteins and molecules (total protein,
albumin, zinc, ceruloplasmin, haptoglobin, paraoxonase,
milk cortisol and SCC). To control the differences in
adaptive response between breeds and to correct it for the
potential effect of the environment the clustering was
performed separately for each farm. For this the principal
component analysis (PCA) using the correlation matrix in
SPSS package was applied. According to the first two
principal components the ten extreme individuals (five
“plus” [APP+] and five “minus” [APP-] variants) from each
farm were selected for gene expression analysis.

RNA quality control and sequencing
First RNA was quantified and quality controlled by Nano-
Drop ND-1000 Spectrophotometer analysis (Thermo
Fisher Scientific Inc., United States). Further RNAs with
the highest quality was assigned the RNA integrity num-
ber (RIN) score by the Agilent 2100 Bioanalyzer (Agilent
Technologies, United States) [32]. Finally samples with
RIN ≥ 7 were selected for sequencing [33].
Previously was reported that high-throughput se-

quencing by RNA-Seq is highly reproducible within a
large dynamic range of detection and provides an
accurate estimation of RNA concentration in peripheral
whole blood [20]. Thus, the experimental globin depletion
from RNA samples was avoided as it could significantly
reduce the amount and quality of isolated RNA and
biological samples in our occasion were not possible to
replenish.
The 60RNA samples (30 APP+ and 30 APP- variants)

were sequenced by RNA-seq technology with the Illumina
pipeline [24–27]. Reads obtained from the sequencing
were aligned against Bos taurus UMD 3.1 reference
genome assembly [34].

Table 1 Composition of herds and number of animals included
in the analysis

F1 F2 F3 F4 F5 F6

Breed IH IH IH IS IS IS

Herd size 654 456 442 538 201 270

Dairy animals 347 250 235 280 119 147

First calving 131 85 82 86 41 36

Lactating cows 313 227 195 225 96 123

Cows >50 DIM 279 204 147 185 84 111

Sampled cows 184 112 75 126 78 88

of which:

1st parity 85 40 36 42 35 23

2nd parity 49 33 18 31 11 19

3rd parity 23 18 11 29 18 13

4th parity 17 10 4 14 9 17

>4th parity 10 11 6 10 5 16

(F farm, IH Italian Holstein, IS Italian Simmental, DIM days in milk)
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Post-sequencing analysis
Raw counts produced by RNA-seq were normalized with
the DeSeq2 software [27, 35]. To identify differentially
expressed genes APP+ and APP- cows were compared
either ignoring or considering their breed of origin: i) all
APP+ vs. all APP-; ii) IH APP+ vs. IH APP-; iii) IS APP+
vs. IS APP-.
For each comparison, normalized RNA-seq data were

analyzed with DeSeq2 software to calculate differential
expression values (as log2 of the fold change) and raw
P-values. To identify the significant genes raw P-values
were corrected with the false discovery rate (FDR)
method [36], using the cutoff of 0.05.

Dynamic impact approach analysis
Gene expression data were also analyzed by the “dynamic
impact approach” (DIA) developed by Bionaz and col-
leagues [28] for the transcriptome analysis.
DIA produces the list of the most impacted pathways

integrating information coming from the dataset of the
whole list of genes (regardless of their significance), differ-
ential expression values, FDR correction factor and raw
p-value calculated by the DeSeq2 software. Graphically,
the output is well demonstrated through two types of
bars: the Impact bar indicating entity of the impact
(colored in blue), and the Flux bar showing direction of
the impact (red color represents the overexpression of
the pathway, green color represents the under-expression
of the pathway and yellow color indicates the absence in
expression differences).

Annotation clustering
Significant genes were submitted to the Database for
Annotation, Visualization and Integrated Discovery
(DAVID) to perform a serial annotation clustering [37].
This pipeline allowed us to form series of clusters with
genes grouped according to their biological function. P-
values automatically associated to each cluster were
corrected by the Benjamini-Hochberg method. Clusters
were considered significant if corrected P-values were
lower than 0.05. Thereafter, significant genes from dif-
ferent clusters were grouped in a single list and further
checked across comparisons to find out genes in com-
mon. The clustering procedure was applied separately
for each comparison.

Statistical analysis of milk production data
To investigate differences in milk composition across
farms and APP groups, a mixed model analysis of vari-
ance (ANOVA) with nested design and Fisher’s least sig-
nificant difference (LSD) test was applied for each breed
separately. Data were analyzed with the SPSS package
using the following statistical model:

Y ijk ¼ mþ Farmi þ APP Farmð Þji þ eijk

Where:

� Yijk: dependent variable;
� m: general mean;
� Farmi: fixed effect for the farm, with i ranging from

1 to 3;

Table 2 Characteristics of the sampled animals within each farm

F1 F2 F3 F4 F5 F6

BCS 2.4 ± 0.4 2.4 ± 0.5 2.2 ± 0.5 3.0 ± 0.5 3.4 ± 0.4 2.8 ± 0.3

DIM 179 ± 63 179 ± 53 111 ± 62 160 ± 63 162 ± 99 166 ± 66

Milk yield, kg 42.9 ± 9.1 36.9 ± 7.7 33.7 ± 7.7 26.9 ± 7.8 30.2 ± 6.9 27.8 ± 1.5

Milk fat, % 3.3 ± 0.5 4.1 ± 0.6 3.5 ± 0.6 3.7 ± 0.7 4.1 ± 4.5 3.5 ± 0.7

Milk protein, % 3.1 ± 0.3 3.4 ± 0.3 3.1 ± 0.3 3.7 ± 0.3 3.6 ± 0.4 3.5 ± 0.3

Milk casein, % 2.5 ± 0.2 2.6 ± 0.2 2.5 ± 0.2 2.9 ± 0.2 2.8 ± 0.3 2.8 ± 0.3

Milk urea, mg/dL 18.2 ± 3.4 19.4 ± 4.2 20.8 ± 3.4 21.5 ± 5.5 20.5 ± 4.1 20.9 ± 4.2

SCC 369 ± 732 322 ± 594 439 ± 847 659 ± 1,210 181 ± 503 485 ± 1,319

Milk cortisol, pg/mL 492 ± 335 586 ± 840 562 ± 314 636 ± 275 448 ± 174 481 ± 319

Blood parameters:

Ceruloplasmin, μmol/L 2.8 ± 0.5 2.9 ± 0.9 2.8 ± 0.6 3.2 ± 0.6 2.4 ± 0.7 2.4 ± 0.5

Total proteins, g/L 77.5 ± 7.8 80.0 ± 6.9 80.6 ± 7.2 81.0 ± 5.2 75.6 ± 5.1 79.7 ± 4.8

Albumin, g/L 37.3 ± 3.1 38.2 ± 3.5 35.3 ± 3.1 37.1 ± 2.1 36.7 ± 2.2 38.6 ± 1.6

Haptoglobin, g/L 0.40 ± 0.33 0.42 ± 0.47 0.50 ± 0.46 0.29 ± 0.30 0.33 ± 0.21 0.42 ± 0.42

Paraoxonase, U/mL 112 ± 26 100 ± 24 104 ± 25 88 ± 21 101 ± 16 90 ± 22

Zinc, μmol/L 14.8 ± 4.3 13.5 ± 2.5 12.1 ± 2.5 12.3 ± 2.7 13.0 ± 2.3 12.1 ± 1.8

(F farm, BCS body condition score, DIM days in milk, SCC somatic cell count, values are expressed as mean ± SD)
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� APP(Farm)ji: nested effect for the APP group of
animals, with j ranging from 1 to 2 within the ith

farm;
� eijk: residual error.

Results
Principal component analysis
The result of PCA is plotted in Fig. 1. The total variability
explained by the first two components for each PCA
separately was on average 50% (with a range from 43 to
54%) for the 6 commercial farms. The first component
explained on average 31% of variability (range of 27-36%)
and the second component explained on average 18% of
variability (range of 15-25%). More accurate information
about % of variability explained by PCA is reported in
Table 4. Variables related to ceruloplasmin, haptoglobin
and SCC were among the most important as they were
highly correlated with the 1st PC within each farm (PCA).
Their loadings correlation values ranged from 0.4-0.8 for

each farm. Variable related to the total proteins was also
very important as it was highly correlated (around 0.7) to
the PC1 in the 4 out of 6 tested farms. Characteristics of
groups of animals chosen for the final transcriptome ana-
lysis in the selected commercial farms are reported in
Additional file 1.

Statistical analysis of milk production data
Significant differences between plus and minus APP
groups were observed for milk urea in IS (P ≤ 0.001).
Other parameters did not show significant differences
(Table 5).
Between farms, IS cows showed significant differences

in milk protein percentage (P ≤ 0.001), milk yield (P ≤
0.01) and percentage of caseins (P ≤ 0.01). For IH animals
the statistically significant differences between farms were
observed only for milk fat percentage (P < 0.05).
Unlike IS animals, APP+ IH animals demonstrated a

marked, even if not significant decrease in milk yield.
Milk urea in APP+ animals showed a marked decrease
in absolute values in both breeds; however in IS breed
the decrease reached the significant level (P < 0.001).

Table 3 Diet composition (kg/d) in the selected commercial
farms, chemical properties and nutritional values of the rations

Item Farms

F1 F2 F3 F4 F5 F6

Lucerne 8.0 4.4 5.0 4.5 3.5 4.5

Pasture hay 1.5 1.5 3.3

Wheat silage 2.2

Corn silage 22.5 20.0 15.0 20.0 32.0 20.0

Ryegrass silage 8.0 5.0

Cotton seeds 1.2 1.0 1.0

Corn meal 5.2 6.0 6.0 4.5 6.0

Soybean meal 2.0 2.1 2.0 1.0 1.0

Rapeseed meal 1.5 1.4

Linseed 0.3

Straw 0.5

Wheat bran 1.5

Supplements 3.4 0.2 0.6 0.5 9.5 2.5

Total 41.6 45.6 31.4 35.9 48.3 39.0

DMI 23.3 22.6 19.5 20.7 23.4 19.8

Starch, % DM 25.2 27.8 28.6 26.8 25.5 30.1

CP, % DM 14.7 14.0 14.8 13.2 13.1 13.2

EE, % DM 2.9 3.9 4.1 4.1 2.8 3.0

Ashes, % DM 6.6 6.7 7.5 7.4 7.8 6.4

NDF, % DM 38.7 37.4 35.4 36.9 38.5 38.8

MFU 20.0 20.7 17.9 17.9 21.3 17.5

PDIN, g/d 2.222 2.058 1.972 1.776 1.996 1.726

PDIE, g/d 2.154 2.043 1.940 1.784 1.960 1.785

(F farm, DMI dry matter intake, DM dry matter, CP crude protein, EE ether extract,
NDF neutral detergent fiber, MFU milk fodder units, PDIN protein digested in
small intestine when rumen-fermentable nitrogen is limiting, PDIE protein
digested in small intestine when rumen-fermentable energy is limiting)

Fig. 1 Clustering of IH and IS animals into APP+ and APP- variants.
The graph summarizes six PCA done separately for each farm

Table 4 The total variability explained by the two first components
for each PCA separately

% Explained variance

F1 F2 F3 F4 F5 F6

IH IH IH IS IS IS

PC1 27.5 33.9 27.2 29.1 35.4 35.6

PC2 19.2 18.0 15.8 24.6 16.7 14.6

Total 46.7 51.9 43.0 53.7 52.1 50.2

(PC principal component, F farm, IH Italian Holstein, IS Italian Simmental)
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Post-sequencing analysis
Alignment of RNA-seq data to the UMD 3.1 bovine ref-
erence genome identified 13,665 genes expressed in bo-
vine blood cells. A total of 1,152 significant differentially
expressed genes (P < 0.05) were identified in the com-
parison of all APP+ vs. all APP- animals across breeds;
531 in comparison of IH APP+ vs. APP- and 217 in
comparison of IS APP+ vs. APP-. The number of shared
and unique transcripts within each comparison is indi-
cated on the Venn diagram (Fig. 2).
The higher number of significant genes obtained in

the global comparison among APP+ and APP- cows
may be explained by the procession of data from all

sampled animals, hence each gene had expression data
from both IF and IS cows. This fact increased the level
of significance of number of genes in the comparison of
all APP+ vs. all APP- variants and showed a less robust
significance within intra-breed comparisons.
This analysis also allowed to evaluate the number of

over- and underexpressed genes in the list of significant
DE genes. Since the expression rate was indicated as the
log2 of the fold change, we assumed that genes with an
expression rate greater than 1 were overexpressed and
those with the expression rate lower than 1 were under-
expressed. The three comparisons, despite the great
diversity in the number of significant genes, showed
similar ratios between over- and underexpressed genes:
in each case, the number of overexpressed genes was far
greater than the number of underexpressed ones (Fig. 3).
In the global comparison between APP+ and APP- cows
the upregulated genes were about 2-fold higher than the
downregulated: 763 overexpressed and 389 underex-
pressed genes. In IF comparison overexpressed genes
were about 3-fold higher than underexpressed ones: 396
overexpressed and 135 underexpressed genes. In IS
comparison overexpressed genes were about 4-fold more
numerous than underexpressed ones: 174 overexpressed
and 43 underexpressed genes.
These data highlights that the adaptive response

affects blood transcriptome principally by increasing the
expression of a high number of genes, while the down-
regulation is a mechanism with much lower extent.

Dynamic impact approach
The ten most impacted KEGG pathways were identified
by DIA for the comparisons with or without breed
consideration (Fig. 4).

Table 5 Differences in milk parameters among commercial farms and APP groups of animals with p-values and mean standard
errors of the statistical analysis performed with SPSS package

Italian Holstein

Milk production data F1 F2 F3 APP- APP+ PFarm PAPP(Farm) MSE, %

Milk yield, kg 39.5 37.3 33.0 40.7 32.6 0.231 0.086 4.90

Fat, % 3.08 3.99 3.52 3.37 3.70 * 0.351 2.98

Proteins, % 3.15 3.28 3.17 3.18 3.21 0.471 0.630 0.65

Casein, % 2.50 2.55 2.53 2.53 2.52 0.837 0.601 0.57

Urea, mg/dL 15.75 19.77 19.27 20.41 16.12 0.103 0.092 5.38

Italian Simmental

Milk production data F4 F5 F6 APP- APP+ PFarm PAPP(Farm) MSE, %

Milk yield, kg 22.4 33.8 28.3 29.5 26.7 ** 0.219 4.43

Fat, % 3.80 3.35 3.27 3.34 3.61 0.208 0.503 3.94

Proteins, % 3.77 3.32 3.31 3.47 3.47 *** 0.287 0.58

Casein, % 2.88 2.62 2.56 2.70 2.66 ** 0.459 0.58

Urea, mg/dL 21.62 19.57 20.68 23.12 18.12 0.453 *** 2.87

(*: low significance [P ≤ 0.05]; **: high significance [P ≤ 0.01]; ***: very high significance [P ≤ 0.001])

Fig. 2 The number of shared and unique transcripts within
each comparison
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Fig. 3 The number of upregulated and downregulated genes within each comparison

Fig. 4 DIA outputs for each comparison (a: APP+ vs. APP-, b: IH APP+ vs. IH APP-, c: IS APP+ vs. IS APP-)
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The three most impacted pathways in the comparison
APP+ vs. APP- across breeds and within IH (Figs. 4a
and b) are vitamin B6 metabolism, folate biosynthesis
and nitrogen metabolism. In IS (Fig. 4c) these pathways
are within the first five, in particular nitrogen metabol-
ism is the second, folate biosynthesis the third and vita-
min B6 metabolism the fifth most impacted pathway.
Other pathways found in all three comparisons are lino-
leic acid metabolism, drug metabolism-other enzymes
and African trypanosomiasis. Some other pathways are
present in one comparison or in two out of three com-
parisons. Amoebiasis and dorso-ventral axis formation
are present in the comparison across breeds and in IH;
drug metabolism-cytochrome P450 is present in the
comparison across breeds and in IS; NOD-like receptor
signaling pathway is present only in the comparison

across breeds; taurine and hypotaurine metabolism and
caffeine metabolism pathways are present only in the IH
comparison; retinol metabolism, steroid hormone bio-
synthesis and metabolism of xenobiotics by cytochrome
P450 are present only in the IS comparison.
The complete list of all impacted pathways in each

comparison is presented in Additional file 2.

Gene annotation clusters
Function terms of each cluster identified by DAVID within
each comparison were predicted by Gene ontology (GO)
(Table 6). After elimination of repeated gene terms, 369
significant differentially expressed genes across breeds,
173 in IH and 73 in IS remained included in significant
clusters.

Table 6 Groups of significant clusters in each comparison with indication of the Benjamini-Hochberg-corrected P-values (significance
threshold: P < 0.05) and the number of genes in common among the three comparisons (see Table 7). Clusters were produced
using DAVID database

Annotation Cluster # Genes Function terms Corrected P-value # Common genes

APP+ vs. APP-

C1 162 Purine nucleotide binding 0.001 2

C2 44 Cytoplasmic vesicle 0.003 1

C3 37 Cell fraction 0.009 2

C4 15 Positive regulation of cytokine production 0.009 N.A.

C5 150 Glycoprotein 0.016 23

C6 32 Response to wounding 0.018 1

C7 21 Regulation of cytokine production 0.026 1

C8 25 Leukocyte activation 0.029 N.A.

IH APP+ vs. IH APP-

CH1 11 Tyrosine protein kinase 0.003 N.A.

CH2 72 Purine nucleotide binding 0.005 2

CH3 21 Protein dimerization activity 0.006 N.A.

CH4 83 Glycoprotein 0.006 23

CH5 23 Cytoplasmic vesicle 0.035 1

IS APP+ vs. IS APP-

CS1 6 Calcium-binding region 0.004 N.A.

CS2 5 Anchored to membrane 0.016 3

CS3 7 Enzyme inhibitor activity 0.017 1

CS4 21 Extracellular space 0.018 12

CS5 5 Negative regulation of molecular function 0.018 N.A.

CS6 3 Cytokine biosynthetic process 0.019 1

CS7 27 Glycoprotein 0.024 19

CS8 42 Glycoprotein 0.025 23

CS9 10 Positive regulation of molecular function 0.030 4

CS10 15 Organelle lumen 0.033 1

CS11 4 Response to steroid hormone stimulus 0.034 2

CS12 5 Nuclear membrane 0.039 1
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A total of 24 genes were differentially expressed in all
3 comparisons. Gene names and differential expression
values for each of the 24 genes within each group are
listed in Table 7.

Discussion
The aim of the present study was to investigate the
impact of stress response on gene expression patterns
in peripheral blood cells of lactating cows. The analysis
of transcriptome variation was performed after the peak
of lactation as the transition period is the most challen-
ging in dairy cows and can interfere with the metabolic
imbalance of animals [38]. Considering that animals on
each commercial farm were kept under the same environ-
mental conditions and that the farm factor was considered
in the statistical model, the influence of management on
animal adaptive response should have been minimized.
Hence, the different levels of plasma APPs are likely to
result from individual animal response to subclinical
inflammatory/infective events or other stresses, since cows

did not show visible clinical signs or symptoms of the
presence of functional disorders.
Stress response is a very complex phenomenon as it can

affect overall physiology through different mechanisms,
like activation of sympathetic nervous system with the
release of catecholamines, activation of HPA axis and
non-circadian production of glucocorticoids [1, 4, 39],
onset of an acute phase response [14]. Activation of these
mechanisms may cause harmful and sometimes irre-
versible effects on many body systems. Stress may affect
circulating glucocorticoids [4, 40, 41] with conse-
quences on female reproductive system [42], immune sys-
tem, osteoblastogenesis and bone metabolism [43–45],
muscle production [46], metabolism of nutrients [47–49],
functioning of the thyroid gland [50] and growth hormone
axis [51]. Stress research is therefore complicated by these
complex and diverse mechanisms and by individual and
interspecies differences in stress response [17]. Under-
standing the biological basis of stress response in livestock
is important for improving animal welfare in intensive
production systems. In addition of being a growing public
concern, animal welfare is important for production effi-
ciency and influence both farm economy and environ-
mental footprint. Whole-transcriptome analysis is crucial
to understand how stress influences gene expression to
elicit the complex phenomenon of adaptive response.
Here we investigated differential expression in blood sam-
ples obtained from cows with high and low levels of posi-
tive APPs as proxy of stress status and identified stress
response-related genes pathways in white blood cells.

Impacted pathways by DIA
Once fed a list of differentially expressed genes, DIA
exploits an online sheet of the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database [52] to detect
significantly impacted pathways. It calculates the entity
and direction of the impact and whether the pathway is
entirely overexpressed, underexpressed or if the expres-
sion is not altered at all.
The most impacted pathways in APP+ cows in across

and within breed analyses are presented in the Fig. 4.
Significant genes in significant KEGG pathways have
been analyzed in detail to understand gene and pathway
function, since the names of KEGG pathways reported
in the DIA output files are sometimes misleading.
The pathway of vitamin B6 metabolism (KEGG

bta00750), was among the three most significant ones
(rank 1 across breeds and in IH and rank 5 in IS). In this
pathway we found two significant genes, PDXK (pyridoxal
kinase) and AOX1 (aldehyde oxidase 1). The latter was
not significant in IS comparison, but it shows xa similar
expression pattern. Pyridoxal kinase is involved in the
ATP-dependent phosphorylation of pyridoxal, pyridox-
amine and pyridoxine to pyridoxal-5-phosphate (PLP),

Table 7 Common genes for the Annotation Clusters (see
Table 6) and the relative differential expression values within
each comparison

Gene name Differential expression (n-fold)

APP+ vs. APP- IH APP+ vs. IH APP- IS APP+ vs. IS APP-

CA4 3.32 3.68 3.00

ALPL 3.81 4.89 2.97

IGF2 0.33 0.26 0.42

IL10 1.67 1.90 1.47

IGF2R 2.50 1.91 1.36

IL2RA 2.18 2.23 2.14

SCARB1 1.67 1.97 1.42

SLC6A2 2.56 2.79 2.35

MMP9 1.84 2.03 1.66

CHI3L1 2.25 2.87 1.76

PROK2 2.27 2.42 2.13

NMUR2 2.76 2.92 2.60

IL34 0.50 0.46 0.54

ACE2 2.19 2.51 1.91

HEPACAM2 1.97 2.21 1.75

A2M 1.85 2.18 1.57

TMEM120A 1.54 1.83 1.29

CD163 2.61 3.85 1.77

GPR84 2.17 2.57 1.83

PTX3 5.50 6.71 4.51

LYPD8 0.44 0.46 0.43

DEFB7 1.94 2.00 1.88

GNAL 1.60 1.79 1.43

DEFB10 2.19 2.10 2.28
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pyridoxamine-5-phosphate and pyridoxine-5-phosphate,
respectively. There is a requirement for ubiquitous expres-
sion of piridoxal kinase in mammalian tissues as PLP,
before entering a cell, must be dephosphorylated and after
diffusing through cell membranes it is converted back to
the active cofactor by cytosolic pyridoxal kinase [53]. PLP
is a very important enzymatic cofactor, as it participates to
all transamination reactions and, in some cases, to decarb-
oxylation, deamination and racemization of amino acids
[54], catalyzes the rate-limiting step in glycogenolysis [55].
The impact of PLP on amino acid metabolism has direct
consequences also on protein synthesis, whose physio-
logical level is altered during an adaptive response. This
evidence suggests that overexpression of PDXK gene is
fundamental for metabolism regulation during adaptive
phenomenon, as the cofactor affects protein and energy
metabolism, that are likely increased during adaptation,
and this is true not only for peripheral white blood cells,
but for the vast majority of tissues in an organism. Alde-
hyde oxidase 1 is an enzyme mainly found in liver, shows
broad substrate specificity, including pyridoxal, and cata-
lyzes the oxidation of several endogenous and exogenous
aldehydes, with the production of hydrogen peroxide and
superoxide ion. Aldehyde oxidase isolated from poly-
morphonuclear leukocytes showed a more narrow sub-
strate specificity: for example, the enzyme found in
leukocytes is inactive on xanthine [56]. This enzyme has a
role in oxidative stress and regulation of reactive oxygen
species (ROS) homeostasis [57]. The catalysis requires the
presence of flavin adenine dinucleotide (FAD) and a
molybdopterin cofactor (MoCo) [57–59]. The enzyme
also has a role in nitric oxide (NO) biosynthesis [60].
NO has various functions in the organism; white blood
cells, mainly macrophages, secrete it as a chemical
defense against bacteria and to induce vasodilation [61].
The involvement of aldehyde oxidase 1 in several
oxidative metabolisms, in oxidative stress and in NO
signaling may explain the overexpression of AOX1 gene
in APP+ cows.
Interesting significant genes emerged from the analysis

of folate biosynthesis pathway (KEGG bta00790; rank 2
across breeds and in IH, rank 3 in IS). These are ALPL
(alkaline phosphatase liver/bone/kidney) and MOCS1
(molybdenum cofactor synthesis 1). The ALPL gene is
mainly expressed in neutrophils and monocytes [62]. The
role of alkaline phosphatase is fundamental as a high
number of signal transduction cascades are involved in
adaptive processes. Phosphorylation and dephosphoryla-
tion of signal proteins is the key determinant in the
phenomenon that regulates the transduction and the amp-
lification of a stimulus from the cell membrane receptor
to the nucleus, where the modulation of gene expression
occurs. Elevations in plasma alkaline phosphatase, whose
sources include neutrophils and monocytes, can be also

related to pathological conditions [62]. MOCS1 encodes
for a protein involved in the biological activation of
molybdenum and it is highly expressed by peripheral
white blood cells. Participating in the production of
MoCo, it is indirectly involved in the catalytic activity of
several enzymes, including aldehyde oxidase and xanthine
oxidase [63]. MOCS1 was significant only in APP+ vs.
APP- comparison across breeds and the involvement of
the gene in a number of metabolic oxidative pathways is
likely the reason for its significant overexpression in the
APP+ bovines.
In nitrogen metabolism pathway (KEGG bta00910;

rank 3 across breed and in IH, rank 2 in IS), GLUL (glu-
tamate-ammonia ligase) and CA4 (carbonic anhydrase
IV) genes were significantly differentially expressed.
Glutamate-ammonia ligase is a PLP-dependent enzyme
that produces glutamine from glutamate and free NH3.
Glutamine is a common metabolite in many amino acid,
purine and pyrimidine biosynthetic pathways, so this
enzyme has a major role in protein and nucleic acid
metabolism. It is also involved in acid-base homeostasis,
cell signaling, cell proliferation and biosynthesis of γ-
aminobutyric acid (GABA) [64]. Carbonic anhydrase IV
is an important Zn-dependent enzyme present in several
tissues and, among leukocytes, it is expressed principally
by eosinophils and neutrophils. It has a main role in
the control of acid-base balance in blood and other tis-
sues [65]. Particularly, this isoform exists in the form of
a glycophosphatidylinositol (GPI)-anchored protein and
plays an important role in maintaining an appropriate
cellular environment for the reactions that occur during
adaptive responses. Both these genes are overexpressed
in APP+ cows.
The pathway for linoleic acid metabolism (KEGG

bta00591; rank 4 across breeds, rank 6 in IH, rank 1 in
IS) includes a number of significant genes involved in
inflammatory response and metabolism of drugs and
xenobiotics. The phospholipase A2 genes, PLA2G4F
and PLA2G4A, selectively hydrolyze membrane phospho-
lipids. The first one has high selectivity for phosphatidyl-
ethanolamine, hydrolyzing the ester bond in sn-2 position,
and has a role in mitogen-associated protein kinase
(MAPK) and Ras signaling pathways [66]. The latter
pathway leads to the production of free arachidonic acid,
which is further converted in eicosanoids, involved in
inflammatory response, and lysophospholipids, that are
precursors of platelet-activating factor (PAF). Hence,
this enzyme has a role in inflammatory response and
hemodynamics, and is also involved in MAPK and G
protein-coupled receptor (GPCR) signaling pathways
[67]. Some significant genes in this pathway belong to
cytochrome P450 superfamily (in detail: CYP2E1,
CYP3A4, CYP3A5). These genes are also involved in me-
tabolism of steroid hormones, drugs and carcinogens,
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playing a role in steroid-mediated physiological responses,
activation and metabolic drug clearance and carcinogen-
esis [68–70].
In the pathway of drug-metabolizing enzymes (KEGG

bta00983; rank 5 across breeds, rank 4 in IH and IS)
there are several significant genes with a role in the
metabolism of nucleotides, suggesting their role in an
adaptive response. Xanthine dehydrogenase (XDH) is a
paralog of AOX1, which can operate either as a dehydro-
genase or as an oxidase. Xanthine dehydrogenase is
involved in metabolism of hypoxanthine and xanthine
and in the generation of ROS [71]. Recently, its role in
recruiting macrophages through inflammasome activation
has been investigated [72]. Cytidine deaminase (CDA) pre-
serves pyrimidine pool by irreversibly deaminating cyti-
dine and deoxycytidine to uridine and deoxyuridine,
respectively. It is also involved in antibody diversification
[73]. Uridine phosphorylase (UPP1) reversibly cleaves
ribose-1-phosphate and deoxyribose-1-phosphate from
uridine and deoxyuridine, releasing free uracil [74].
Another significant enzyme involved in pyrimidine metab-
olism is dihydropyrimidine dehydrogenase (DPYD) [75].
In African trypanosomiasis (KEGG bta05143; rank 6

across breeds, rank 5 in IH, rank 9 in IS) and
amoebiasis (KEGG bta05146; rank 7 across breeds, rank
9 in IH) pathways we found a large number of signifi-
cant genes directly involved in the onset of a stress
response or inflammation. Among these, we found sev-
eral proinflammatory cytokine genes, as IL12B, IL18,
IL1B and TNFα. These cytokines are produced by dif-
ferent types of immune cells involved in growth, differ-
entiation, chemotaxis and proliferation of white cells
during an inflammatory event [76–80]. NFkB1 and
RELA, the nuclear transcription factor genes forming
the same protein complex, were also among affected
ones. NFkB1 is activated by cytokines, free radicals, UV
ray and pathogens’ products and it is involved in regu-
lation of inflammation-mediated pathways [81] and in
regulation of the expression of number of genes
involved in cell adhesion and migration across vascular
endothelium, like vascular cell adhesion molecule
(VCAM1), laminin genes (LAMA4, LAMC1), fibronec-
tin (FN1) and integrin genes (ITGB2, ITGAM). Some of
the latter genes are strongly induced by cytokine signal-
ing, so they have a primary importance in leukocyte
adhesion and in cell signal transduction [82–86].
Significant genes in the African trypanosomiasis and
amoebiasis pathways include also a number of cell
surface receptors involved in inflammation signaling
cascades, regulation of cell physiology during these events
and in functionality of activated leukocytes. Among these
genes there are Fas cell surface death receptor (FAS), toll-
like receptors (TLR2, TLR4), CD14 molecule and comple-
ment protein genes (C8A) [87–90]. These receptors

transducer signals through different molecules, including
myeloid differentiation factor (MYD88) [91]. Moreover,
some significant genes in these pathways include enzymes
that regulate the production of second messengers, like
phosphatidylinositide-3-kinases (PIK3R2, PIK3CD) [92]
and phospholipases C (PLCB3, PLCB4) [93], and proteases
that regulate cell protein homeostasis, limiting tissue
damage produced by overexpressed proteolytic enzymes,
like serpin peptidases (SERPINB1, SERPINB3) [94]. In IS
breed amoebiasis pathway was found to be not signifi-
cantly impacted between APP+ and APP- animals.
NOD-like receptor signaling pathway (KEGG bta04621)

was found to be significant only in the APP+ vs. APP-
across breed comparison (rank 8). Significant genes
belonging to the pathway are mostly involved in regula-
tion of cell cycle and pro-apoptotic signaling, interacting
with the nuclear factor NFkB1 to activate it. Pro-apoptotic
genes include the nucleotide-binding oligomerization do-
main containing receptors (NOD1, NOD2) [95] and genes
of the caspase recruitment domain family (CARD6,
PYCARD, NLRP3), which also participate to the formation
of inflammasomes [96–98]. In this pathway there are also
two significantly overexpressed molecular chaperones,
HSP90AA1 and HSP90B1.
Dorso-ventral axis formation (KEGG bta04320) path-

way was significantly impacted in APP+ vs. APP- across
breeds (rank 9) and in IH (rank 8). However, some genes
belonging to this pathway were significant also in IS
breed. In this pathway there are two significant tran-
scription factors, ETV6 and ETS2, which are oncogenes
with a role in hematopoiesis and apoptosis [99, 100].
The cytochrome P450-mediated metabolism of drugs

(KEGG bta00982) is among the significantly impacted
pathways across breeds (rank 10) and in IS (rank 7).
Important genes involved in oxidative stress and de-
toxification of oxidation by-products are included in
this pathway, such as membrane-bound microsomal
glutathione S-transferase (MGST1), with a role in the
development of inflammation and in cellular defense
[101], aldehyde dehydrogenase (ALDH3B1) [102] and
monoamine oxidase A (MAOA) [103]. Monoamine oxi-
dase A has a role in the metabolism of serotonin: this
molecule has been shown to be synthesized, released
and degraded also by T lymphocytes [104]). Among the
significant genes, we found also some terms signifi-
cantly overexpressed in other pathways, as AOX1 and
CYP2E1.
Metabolism of taurine and hypotaurine (KEGG

bta00430) was strongly impacted only in IH (rank 7) and
the only significant gene detected was a member of γ-
glutamyltransferase family (GGT5). This gene is in-
volved in metabolism of glutathione and leukotrienes
and plays a role in oxidative stress and inflammatory
response [105].
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The pathway of caffeine metabolism (KEGG bta00232)
showed a high impact only in IH (rank 10). It includes
the gene XDH, the function of which has been previ-
ously discussed.
Retinol metabolism (KEGG bta00830) was highly

impacted only in IS (rank 6). Important differentially
expressed genes in this pathway are AOX1, CYP3A4 and
CYP3A5 and their role in adaptive response was described
previously.
Another pathway impacted only in IS included ster-

oid hormone biosynthesis pathway (KEGG bta00140;
rank 8). It included CYP3A4, CYP3A5 and CYP2E1
genes, involved in the biosynthesis of different types of
steroids, including corticosteroids, which have a rele-
vant role in adaptive response.
The same scenario occurred also in the pathway relative

to metabolism of xenobiotics mediated by cytochrome
P450 (KEGG bta00980; rank 10 in IS). It included genes
MGST1, CYP2E1 and ALDH3B1, which are significant
also in other pathways.
The same significant gene plays different roles in

different pathways, for example in the metabolism of
different compounds or in the signaling of a number of
signal transduction cascades. Thus, to obtain a compre-
hensive analysis and to confirm the significance of the
relevant genes, the most impacted pathways were ex-
plored by DAVID.

DAVID annotation clusters
Annotation clusters produced by DAVID online tool con-
firmed the significance of a large number of genes involved
in adaptive response. Genes were clustered according to
their common structural characteristics or molecular func-
tion. Table 6 summarizes the significant clusters, the num-
ber of total genes per cluster and the number of genes in
common with at least another cluster. In Table 7 are listed
common genes between all three comparisons. A compre-
hensive list of genes included in each cluster is available in
Additional file 3.
The highest number of common genes among clusters

was included in C5, CH4 and CS8, which are clusters of
glycoproteins, based on the GO terms. Twenty-three out
of 24 shared genes are included in these clusters. The only
one excluded is the GNAL gene. We can assume that
genes present in these clusters are grouped only according
to structural features, as they have various molecular
functions, but are all classified as glycoproteins. GNAL is
included in the cluster that reports purine nucleotide-
interacting proteins.
In these clusters we can find some genes that were sig-

nificant also in DIA output, i.e., CA4, ALPL and IL10.
Other shared genes were not included in the most im-
pacted pathways, but they have an important role in the
regulation of adaptive response. For example, the receptor

of insulin-like growing factor II (IGF2R) is overexpressed
in all three comparisons, possibly because of its role in
intracellular trafficking of lysosomal enzymes and degrad-
ation of IGF-II [106].
Angiotensin I-converting enzyme 2 (ACE2) has a direct

effect on cardiac and renal functions [107]. Its overexpres-
sion may be another consequence of hyperactivation of
HPA axis, as glucocorticoids have a direct effect on blood
pressure and cardiovascular system, and of an increased
uremia, as this condition may trigger the recruitment of
pro-atherogenic, ACE2-expressing monocytes [108].
As most of cytokines, present in all three comparisons,

interleukin 10 (IL10) is significantly overexpressed. Such
overexpression can be explained by its important role in
lymphocytes differentiation and proliferation and in the
production of antibodies by B cells. In the same list of
overexpressed genes are present receptors for cytokines,
like interleukin 2 receptor alpha (IL2RA), involved in the
intracellular signaling pathways.
The only one underexpressed cytokine revealed among

three comparisons is the pro inflammatory cytokine IL34.
Defensins are small antimicrobial, cytotoxic peptides

produced by neutrophils [109]. β-defensins (DEFB7 and
DEFB10 in Table 7), belonging to one of the three existing
groups of defensins, were overexpressed in all compari-
sons. Their overexpression could be associated to the
presence of a bacterial infection in mammary gland [110]
and this result is in agreement with the highly impacted
pathway relative to S. aureus infection (see Additional
file 2).
Another interesting overexpressed gene is the gene

encoding matrix metalloproteinase 9 (MMP9). Its over-
expression can be associated with an augmented produc-
tion of hematopoietic stem cells [111] that give rise to
all red and white blood cells and platelets. MMP9 has
recently been investigated for its role in promoting the
secretion of pro-inflammatory cytokines and the migra-
tion of T cells towards inflammation sites. Moreover, the
protein increases the permeability of brain-blood barrier
to cytokines, showing an important involvement in neu-
roinflammation [112].
Summarizing the results, a lot of highly impacted

pathways were found in common between IH and IS
breeds, indicating a similar variation in the gene expres-
sion under environmental adaptation. This observation
was also confirmed by annotation clustering of the signifi-
cantly expressed genes: in fact, some of the significantly
clustered genes are present also in the most impacted
pathways, with similar levels of expression.
Differences between breeds were observed only on the

level of individual genes. Therefore, considering the over-
all variation in stress-inducing factors and stress-related
gene expression, the general patterns can be considered
very similar in the two breeds investigated.
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The obtained data can be considered reliable even if
the further validation analysis of the differential gene
expression in the population could improve the rele-
vance of the conclusions. This point can be developed in
a future research.

Analysis of milk production data
The differences in milk production data between APP-
and APP+ cows are reported in Table 5. Significant asso-
ciation with high APP level was observed only for milk
urea in IS, which showed a marked decrease in APP+
animals. A marked decrease, close to being statistically
significant, was observed also in IH milk yield and milk
urea.
The decrease in milk yield can be associated to the onset

of a stress response as energy resources are driven towards
other organs and other more important physiological pro-
cesses to guarantee the animal’s survival. The decrease in
milk urea can be linked to the overall increased protein
synthesis. In dairy cows milk urea reflects the catabolism
of protein by the ruminant tissues and within the rumen
by bacteria. The decrease of rumen ammonia may indicate
that animals increase the protein synthesis during an
adaptive response [113]. Indeed, high levels of APPs and
at the same time high expression of gene products of
several pathways were observed in APP+ animals.

Conclusions
This transcriptomic study in lactating dairy cows from IH
and IS breeds allowed to assess that the onset of an adap-
tive response to the environment involves a large number
of pathways that are regulated in a similar way in the two
breeds, with marginal differences in significantly over- or
underexpressed single genes. The altered expression of
these genes is statistically associated with the variations of
only certain milk production parameters between groups
of cows with activated and not activated stress response
mechanisms.
Considering all the results we can conclude that the two

studied breeds have similar patterns but vary in the degree
of activation of metabolic and physiological mechanisms
of adaptation to the environment. IH showed a higher rate
of significant genes and impacted pathways, demonstrat-
ing a higher metabolic activity, respect to the IS breed.
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Additional file 1: Characteristics of animals chosen for the
transcriptome analysis in the selected commercial farms. F: farm, IH:
Italian Holstein, IS: Italian Simmental, DIM: days in milk, BCS: body
condition score, SCC: somatic cell count, values are expressed as mean
± SD. (XLSX 11 kb)

Additional file 2: Complete set of 10% most impacted pathways
produced by DIA analysis in each comparison. Three images are presented.
The first image (named A) collects the 10% most impacted pathways for

APP+ vs. APP- comparison. The second image (named B) lists the 10% most
impacted pathways for IH APP+ vs. IH APP- comparison. The third image
(named C) lists the 10% most impacted pathways for IS APP+ vs. IS APP-
comparison. (DOCX 211 kb)

Additional file 3: Complete list of genes included in DAVID Annotation
Clusters. Each sheet of the.xlsx file includes one of the Annotation Clusters
listed in Table 6 of the present article. In each Annotation Cluster the
included genes are listed. The genes found to be common in each
comparison are bolded. (XLSX 57 kb)
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