4,118 research outputs found

    Assessing the Health of Richibucto Estuary with the Latent Health Factor Index

    Get PDF
    The ability to quantitatively assess the health of an ecosystem is often of great interest to those tasked with monitoring and conserving ecosystems. For decades, research in this area has relied upon multimetric indices of various forms. Although indices may be numbers, many are constructed based on procedures that are highly qualitative in nature, thus limiting the quantitative rigour of the practical interpretations made from these indices. The statistical modelling approach to construct the latent health factor index (LHFI) was recently developed to express ecological data, collected to construct conventional multimetric health indices, in a rigorous quantitative model that integrates qualitative features of ecosystem health and preconceived ecological relationships among such features. This hierarchical modelling approach allows (a) statistical inference of health for observed sites and (b) prediction of health for unobserved sites, all accompanied by formal uncertainty statements. Thus far, the LHFI approach has been demonstrated and validated on freshwater ecosystems. The goal of this paper is to adapt this approach to modelling estuarine ecosystem health, particularly that of the previously unassessed system in Richibucto in New Brunswick, Canada. Field data correspond to biotic health metrics that constitute the AZTI marine biotic index (AMBI) and abiotic predictors preconceived to influence biota. We also briefly discuss related LHFI research involving additional metrics that form the infaunal trophic index (ITI). Our paper is the first to construct a scientifically sensible model to rigorously identify the collective explanatory capacity of salinity, distance downstream, channel depth, and silt-clay content --- all regarded a priori as qualitatively important abiotic drivers --- towards site health in the Richibucto ecosystem.Comment: On 2013-05-01, a revised version of this article was accepted for publication in PLoS One. See Journal reference and DOI belo

    Solidification of syndiotactic polystyrene by a continuous cooling transformation approach

    Get PDF
    Syndiotactic polystyrene (sPS) was solidified from the melt under drastic conditions according to a continuous cooling transformation methodology developed by the authors, which covered a cooling rate range spanning from approximately 0.03 to 3000 °C/s. The samples produced, structurally homogeneous across both their thickness and surface, were analyzed by macroscopic methods, such as density, wide-angle X-ray diffraction (WAXD), and microhardness (MH) measurements. The density was strictly related to the phase content, as confirmed by WAXD deconvolution. The peculiar behavior encountered (the density first decreasing and then increasing with the cooling rate) was attributed to the singularity of the phases formed in sPS; that is, one of the crystalline phases (α) was less dense than the amorphous phase, and the latter, in turn, was less dense than the other crystalline phase (β). With an increasing cooling rate, the thermodynamically stable phase (β) disappeared first, and it was followed by the α phase. On the other hand, the MH values remarkably depended on the amount of the β phase, the α-phase content influencing the mechanical properties only to a minor extent. The behavior of the crystallization kinetics was described through a modified multiphase Kolmogoroff–Avrami–Evans model for nonisothermal crystallization

    Restricted Isometries for Partial Random Circulant Matrices

    Get PDF
    In the theory of compressed sensing, restricted isometry analysis has become a standard tool for studying how efficiently a measurement matrix acquires information about sparse and compressible signals. Many recovery algorithms are known to succeed when the restricted isometry constants of the sampling matrix are small. Many potential applications of compressed sensing involve a data-acquisition process that proceeds by convolution with a random pulse followed by (nonrandom) subsampling. At present, the theoretical analysis of this measurement technique is lacking. This paper demonstrates that the ssth order restricted isometry constant is small when the number mm of samples satisfies m(slogn)3/2m \gtrsim (s \log n)^{3/2}, where nn is the length of the pulse. This bound improves on previous estimates, which exhibit quadratic scaling

    Ultrahard carbon film from epitaxial two-layer graphene

    Full text link
    Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. To date, there hasn't been any practical demonstration of the transformation of multi-layer graphene into diamond-like ultra-hard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, resisting to perforation with a diamond indenter, and showing a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp2-to-sp3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than 3 to 5 layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.Comment: Published online on Nature Nanotechnology on December 18, 201

    Interleukin-1 polymorphisms associated with increased risk of gastric cancer

    Get PDF
    Helicobacter pylori infection is associated with a variety of clinical outcomes including gastric cancer and duodenal ulcer disease. The reasons for this variation are not clear, but the gastric physiological response is influenced by the severity and anatomical distribution of gastritis induced by H. pylori. Thus, individuals with gastritis predominantly localized to the antrum retain normal (or even high) acid secretion, whereas individuals with extensive corpus gastritis develop hypochlorhydria and gastric atrophy, which are presumptive precursors of gastric cancer. Here we report that interleukin-1 gene cluster polymorphisms suspected of enhancing production of interleukin-1-beta are associated with an increased risk of both hypochlorhydria induced by H. pylori and gastric cancer. Two of these polymorphism are in near-complete linkage disequilibrium and one is a TATA-box polymorphism that markedly affects DNA-protein interactions in vitro. The association with disease may be explained by the biological properties of interleukin-1-beta, which is an important pro-inflammatory cytokine and a powerful inhibitor of gastric acid secretion. Host genetic factors that affect interleukin-1-beta may determine why some individuals infected with H. pylori develop gastric cancer while others do no

    Janus monolayers of transition metal dichalcogenides.

    Get PDF
    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements

    Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    Get PDF
    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country\u27s current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility

    Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations

    Get PDF
    Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth

    Automated simultaneous analysis phylogenetics (ASAP) : an enabling tool for phlyogenomics

    Get PDF
    © 2008 Sarkar et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in BMC Bioinformatics 9 (2008): 103, doi:10.1186/1471-2105-9-103.The availability of sequences from whole genomes to reconstruct the tree of life has the potential to enable the development of phylogenomic hypotheses in ways that have not been before possible. A significant bottleneck in the analysis of genomic-scale views of the tree of life is the time required for manual curation of genomic data into multi-gene phylogenetic matrices. To keep pace with the exponentially growing volume of molecular data in the genomic era, we have developed an automated technique, ASAP (Automated Simultaneous Analysis Phylogenetics), to assemble these multigene/multi species matrices and to evaluate the significance of individual genes within the context of a given phylogenetic hypothesis. Applications of ASAP may enable scientists to re-evaluate species relationships and to develop new phylogenomic hypotheses based on genome-scale data.This work is funded in part by NSF DBI-0421604 to GC and RD. INS is supported in part by the Ellison Medical Foundation
    corecore