17,093 research outputs found

    Superstatistics

    Full text link
    We consider nonequilibrium systems with complex dynamics in stationary states with large fluctuations of intensive quantities (e.g. the temperature, chemical potential, or energy dissipation) on long time scales. Depending on the statistical properties of the fluctuations, we obtain different effective statistical mechanics descriptions. Tsallis statistics is one, but other classes of generalized statistics are obtained as well. We show that for small variance of the fluctuations all these different statistics behave in a universal way.Comment: 12 pages /a few more references and comments added in revised versio

    Generalized statistical mechanics and fully developed turbulence

    Full text link
    The statistical properties of fully developed hydrodynamic turbulence can be successfully described using methods from nonextensive statistical mechanics. The predicted probability densities and scaling exponents precisely coincide with what is measured in various turbulence experiments. As a dynamical basis for nonextensive behaviour we consider nonlinear Langevin equations with fluctuating friction forces, where Tsallis statistics can be rigorously proved.Comment: 10 pages, 4 figures. To appear in Physica A (Proceedings of Statphys 21

    The basic analytics of access to financial services

    Get PDF
    Access to financial services, or rather the lack thereof, is often indiscriminately decried as a problem in many developing countries. The authors argue that the"problem of access"should rather be analyzed by identifying different demand and supply constraints. They use the concept of an access possibilities frontier, drawn for a given set of state variables, to distinguish between cases where a financial system settles below the constrained optimum, cases where this constrained optimum is too low, and-in credit services-cases where the observed outcome is excessively high. They distinguish between payment and savings services and fixed intermediation costs, on the one hand, and lending services and different sources of credit risk, on the other hand. The authors include both supply and demand side frictions that can lead to lower access. The analysis helps identify bankable and banked population, the binding constraint to close the gap between the two, and policies to prudently expand the bankable population. This new conceptual framework can inform the debate on adequate policies to expand access to financial services and can serve as the basis for an informed measurement of access.Banks&Banking Reform,Economic Theory&Research,Markets and Market Access,Access to Markets,Financial Intermediation

    On the magnetism and dynamics of prominence legs hosting tornadoes

    Full text link
    Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires understanding their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here, we analyze four consecutive spectropolarimetric scans of a prominence hosting tornadoes on its legs which help us shed some light on their magnetic and dynamical properties. We show that the magnetic field is very smooth in all the prominence, probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation probably related to the motion of the fibrils. Concerning the dynamics, we argue that 1) if rotation exists, it is intermittent, lasting no more than one hour, and 2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).Comment: accepted for publication in Ap

    An observational test for correlations between cosmic rays and magnetic fields

    Full text link
    We derive the magnitude of fluctuations in total synchrotron intensity in the Milky Way and M33, from both observations and theory under various assumption about the relation between cosmic rays and interstellar magnetic fields. Given the relative magnitude of the fluctuations in the Galactic magnetic field (the ratio of the rms fluctuations to the mean magnetic field strength) suggested by Faraday rotation and synchrotron polarization, the observations are inconsistent with local energy equipartition between cosmic rays and magnetic fields. Our analysis of relative synchrotron intensity fluctuations indicates that the distribution of cosmic rays is nearly uniform at the scales of the order of and exceeding 100\p, in contrast to strong fluctuations in the interstellar magnetic field at those scales. A conservative upper limit on the ratio of the the fluctuation magnitude in the cosmic ray number density to its mean value is 0.2--0.4 at scales of order 100\,pc. Our results are consistent with a mild anticorrelation between cosmic-ray and magnetic energy densities at these scales, in both the Milky Way and M33. Energy equipartition between cosmic rays and magnetic fields may still hold, but at scales exceeding 1\,kpc. Therefore, we suggest that equipartition estimates be applied to the observed synchrotron intensity smoothed to a linear scale of kiloparsec order (in spiral galaxies) to obtain the cosmic ray distribution and a large-scale magnetic field. Then the resulting cosmic ray distribution can be used to derive the fluctuating magnetic field strength from the data at the original resolution. The resulting random magnetic field is likely to be significantly stronger than existing estimates.Comment: submitted to MNRA

    Anxiety: An Evolutionary Approach

    Get PDF
    Anxiety disorders are among the most common mental illnesses, with huge attendant suffering. Current treatments are not universally effective, suggesting that a deeper understanding of the causes of anxiety is needed. To understand anxiety disorders better, it is first necessary to understand the normal anxiety response. This entails considering its evolutionary function as well as the mechanisms underlying it. We argue that the function of the human anxiety response, and homologues in other species, is to prepare the individual to detect and deal with threats. We use a signal detection framework to show that the threshold for expressing the anxiety response ought to vary with the probability of threats occurring, and the individual's vulnerability to them if they do occur. These predictions are consistent with major patterns in the epidemiology of anxiety. Implications for research and treatment are discussed

    Experimental Lagrangian Acceleration Probability Density Function Measurement

    Get PDF
    We report experimental results on the acceleration component probability distribution function at Rλ=690R_\lambda = 690 to probabilities of less than 10710^{-7}. This is an improvement of more than an order of magnitude over past measurements and allows us to conclude that the fourth moment converges and the flatness is approximately 55. We compare our probability distribution to those predicted by several models inspired by non-extensive statistical mechanics. We also look at acceleration component probability distributions conditioned on a velocity component for conditioning velocities as high as 3 times the standard deviation and find them to be highly non-Gaussian.Comment: submitted for the special issue of Physica D: "Anomalous Distributions" 11 pages, 6 figures revised version: light modifications of the figures and the tex

    Fusion excitation function revisited

    Full text link
    We report on a comprehensive systematics of fusion-evaporation and/or fusion-fission cross sections for a very large variety of systems over an energy range 4-155 A.MeV. Scaled by the reaction cross sections, fusion cross sections do not show a universal behavior valid for all systems although a high degree of correlation is present when data are ordered by the system mass asymmetry.For the rather light and close to mass-symmetric systems the main characteristics of the complete and incomplete fusion excitation functions can be precisely determined. Despite an evident lack of data above 15A.MeV for all heavy systems the available data suggests that geometrical effects could explain the persistence of incomplete fusion at incident energies as high as 155A.MeV.Comment: 8 pages, 5 figures, contribution to the NN2012 Proceeding
    corecore