23 research outputs found

    High-pressure melt curve of shock-compressed tin measured using pyrometry and reflectance techniques

    Get PDF
    We have developed a new technique to measure the melt curve of a shocked metal sample and have used it to measure the high-pressure solid-liquid phase boundary of tin from 10 to 30 GPa and 1000 to 1800 K. Tin was shock compressed by plate impact using a single-stage powder gun, and we made accurate, time-resolved radiance, reflectance, and velocimetry measurements at the interface of the tin sample and a lithium fluoride window. From these measurements, we determined temperature and pressure at the interface vs time. We then converted these data to temperature vs pressure curves and plotted them on the tin phase diagram. The tin sample was initially shocked into the high-pressure solid γ phase, and a subsequent release wave originating from the back of the impactor lowered the pressure at the interface along a constant entropy path (release isentrope). When the release isentrope reaches the solid-liquid phase boundary, melt begins and the isentrope follows the phase boundary to low pressure. The onset of melt is identified by a significant change in the slope of the temperature-pressure release isentrope. Following the onset of melt, we obtain a continuous and highly accurate melt curve measurement. The technique allows a measurement along the melt curve with a single radiance and reflectance experiment. The measured temperature data are compared to the published equation of state calculations. Our data agree well with some but not all of the published melt curve calculations, demonstrating that this technique has sufficient accuracy to assess the validity of a given equation of state model

    High-pressure melt curve of shock-compressed tin measured using pyrometry and reflectance techniques

    Get PDF
    We have developed a new technique to measure the melt curve of a shocked metal sample and have used it to measure the high-pressure solid-liquid phase boundary of tin from 10 to 30 GPa and 1000 to 1800 K. Tin was shock compressed by plate impact using a single-stage powder gun, and we made accurate, time-resolved radiance, reflectance, and velocimetry measurements at the interface of the tin sample and a lithium fluoride window. From these measurements, we determined temperature and pressure at the interface vs time. We then converted these data to temperature vs pressure curves and plotted them on the tin phase diagram. The tin sample was initially shocked into the high-pressure solid γ phase, and a subsequent release wave originating from the back of the impactor lowered the pressure at the interface along a constant entropy path (release isentrope). When the release isentrope reaches the solid-liquid phase boundary, melt begins and the isentrope follows the phase boundary to low pressure. The onset of melt is identified by a significant change in the slope of the temperature-pressure release isentrope. Following the onset of melt, we obtain a continuous and highly accurate melt curve measurement. The technique allows a measurement along the melt curve with a single radiance and reflectance experiment. The measured temperature data are compared to the published equation of state calculations. Our data agree well with some but not all of the published melt curve calculations, demonstrating that this technique has sufficient accuracy to assess the validity of a given equation of state model

    Prescriptive variability of drugs by general practitioners

    Get PDF
    <div><p>Prescription drug spending is growing faster than any other sector of healthcare. However, very little is known about patterns of prescribing and cost of prescribing between general practices. In this study, we examined variation in prescription rates and prescription costs through time for 55 GP surgeries in Northern Ireland Western Health and Social Care Trust. Temporal changes in variability of prescribing rates and costs were assessed using the Mann–Kendall test. Outlier practices contributing to between practice variation in prescribing rates were identified with the interquartile range outlier detection method. The relationship between rates and cost of prescribing was explored with Spearman's statistics. The differences in variability and mean number of prescribing rates associated with the practice setting and socioeconomic deprivation were tested using t-test and <i>F</i>-test respectively. The largest between-practice difference in prescribing rates was observed for Apr-Jun 2015, with the number of prescriptions ranging from 3.34 to 8.36 per patient. We showed that practices with outlier prescribing rates greatly contributed to between-practice variability. The largest difference in prescribing costs was reported for Apr-Jun 2014, with the prescription cost per patient ranging from £26.4 to £64.5. In addition, the temporal changes in variability of prescribing rates and costs were shown to undergo an upward trend. We demonstrated that practice setting and socio-economic deprivation accounted for some of the between-practice variation in prescribing. Rural practices had higher between practice variability than urban practices at all time points. Practices situated in more deprived areas had higher prescribing rates but lower variability than those located in less deprived areas. Further analysis is recommended to assess if variation in prescribing can be explained by demographic characteristics of patient population and practice features. Identification of other factors contributing to prescribing variability can help us better address potential inappropriateness of prescribing.</p></div

    Mantle Pb paradoxes : the sulfide solution

    Get PDF
    Author Posting. © Springer, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 152 (2006): 295-308, doi:10.1007/s00410-006-0108-1.There is growing evidence that the budget of Pb in mantle peridotites is largely contained in sulfide, and that Pb partitions strongly into sulfide relative to silicate melt. In addition, there is evidence to suggest that diffusion rates of Pb in sulfide (solid or melt) are very fast. Given the possibility that sulfide melt ‘wets’ sub-solidus mantle silicates, and has very low viscosity, the implications for Pb behavior during mantle melting are profound. There is only sparse experimental data relating to Pb partitioning between sulfide and silicate, and no data on Pb diffusion rates in sulfides. A full understanding of Pb behavior in sulfide may hold the key to several long-standing and important Pb paradoxes and enigmas. The classical Pb isotope paradox arises from the fact that all known mantle reservoirs lie to the right of the Geochron, with no consensus as to the identity of the “balancing” reservoir. We propose that long-term segregation of sulfide (containing Pb) to the core may resolve this paradox. Another Pb paradox arises from the fact that the Ce/Pb ratio of both OIB and MORB is greater than bulk earth, and constant at a value of 25. The constancy of this “canonical ratio” implies similar partition coefficients for Ce and Pb during magmatic processes (Hofmann et al. 1986), whereas most experimental studies show that Pb is more incompatible in silicates than Ce. Retention of Pb in residual mantle sulfide during melting has the potential to bring the bulk partitioning of Ce into equality with Pb if the sulfide melt/silicate melt partition coefficient for Pb has a value of ~ 14. Modeling shows that the Ce/Pb (or Nd/Pb) of such melts will still accurately reflect that of the source, thus enforcing the paradox that OIB and MORB mantles have markedly higher Ce/Pb (and Nd/Pb) than the bulk silicate earth. This implies large deficiencies of Pb in the mantle sources for these basalts. Sulfide may play other important roles during magmagenesis: 1). advective/diffusive sulfide networks may form potent metasomatic agents (in both introducing and obliterating Pb isotopic heterogeneities in the mantle); 2). silicate melt networks may easily exchange Pb with ambient mantle sulfides (by diffusion or assimilation), thus ‘sampling’ Pb in isotopically heterogeneous mantle domains differently from the silicate-controlled isotope tracer systems (Sr, Nd, Hf), with an apparent ‘de-coupling’ of these systems.Our intemperance should not be blamed on the support we gratefully acknowledge from NSF: EAR- 0125917 to SRH and OCE-0118198 to GAG
    corecore