10 research outputs found

    The Physics of the B Factories

    Get PDF

    Efficient Resource Scheduling for Big Data Processing in Cloud Platform

    No full text

    Online interval coloring with packing constraints

    No full text
    Abstract. We study online interval coloring problems with bandwidth. We are interested in some variants motivated by bin packing problems. Specifically we consider open-end coloring, cardinality constrained coloring, coloring with vector constraints and finally a combination of both the cardinality and the vector constraints. We construct competitive algorithms for each of the variants. Additionally, we present a lower bound of 24/7 for interval coloring with bandwidth, which holds for all the above models, and improves the current lower bound for the standard interval coloring with bandwidth problem.

    Algorithmic Aspects of the Intersection and Overlap Numbers of a Graph

    Get PDF
    The intersection number of a graph G is the minimum size of a ground set S such that G is an intersection graph of some family of subsets F ⊆ 2 S. The overlap number of G is defined similarly, except that G is required to be an overlap graph of F. Computing the overlap number of a graph has been stated as an open proble

    A Polynomial-Time Algorithm for Finding a Minimal Conflicting Set Containing a Given Row

    Get PDF
    Abstract. A binary matrix has the Consecutive Ones Property (C1P) if there exists a permutation of its columns (i.e. a sequence of column swappings) such that in the resulting matrix the 1s are consecutive in every row. A Minimal Conflicting Set (MCS) of rows is a set of rows R that does not have the C1P, but such that any proper subset of R has the C1P. In [5], Chauve et al. gave a O( ∆ 2 m max(4,∆+1) (n + m + e)) time algorithm to decide if a row of a m × n binary matrix with at most ∆ 1s per row belongs to at least one MCS of rows. Answering a question raised in [2], [5] and [25], we present the first polynomial-time algorithm to decide if a row of a m × n binary matrix belongs to at least one MCS of rows.

    From the LHC to Future Colliders

    Get PDF
    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300/fb of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10/fb of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.Comment: 98 pages, CERN Theory Institute Summary Repor

    Observation of Gravitational Waves from the Coalescence of a 2.54.5 M2.5-4.5~M_\odot Compact Object and a Neutron Star

    No full text
    International audienceWe report the observation of a coalescing compact binary with component masses 2.54.5 M2.5-4.5~M_\odot and 1.22.0 M1.2-2.0~M_\odot (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the source has a mass less than 5 M5~M_\odot at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We estimate a merger rate density of 5547+127 Gpc3yr155^{+127}_{-47}~\text{Gpc}^{-3}\,\text{yr}^{-1} for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star-black hole merger, GW230529_181500-like sources constitute about 60% of the total merger rate inferred for neutron star-black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star-black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap

    Observation of Gravitational Waves from the Coalescence of a 2.54.5 M2.5-4.5~M_\odot Compact Object and a Neutron Star

    No full text
    International audienceWe report the observation of a coalescing compact binary with component masses 2.54.5 M2.5-4.5~M_\odot and 1.22.0 M1.2-2.0~M_\odot (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the source has a mass less than 5 M5~M_\odot at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We estimate a merger rate density of 5547+127 Gpc3yr155^{+127}_{-47}~\text{Gpc}^{-3}\,\text{yr}^{-1} for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star-black hole merger, GW230529_181500-like sources constitute about 60% of the total merger rate inferred for neutron star-black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star-black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap
    corecore