23 research outputs found
Overlap functions in correlation methods and quasifree nucleon knockout from O
The cross sections of the () and () reactions on O
are calculated, for the transitions to the ground state and the first
excited state of the residual nucleus, using single-particle overlap
functions obtained on the basis of one-body density matrices within different
correlation methods. The electron-induced one-nucleon knockout reaction is
treated within a nonrelativistic DWIA framework. The theoretical treatment of
the () reaction includes both contributions of the direct knockout
mechanism and of meson-exchange currents. The results are sensitive to details
of the different overlap functions. The consistent analysis of the reaction
cross sections and the comparison with the experimental data make it possible
to study the nucleon--nucleon correlation effects.Comment: 26 pages, LaTeX, 5 Postscript figures, submitted to PR
Relativistic corrections in (gamma,N) knockout reactions
We develop a fully relativistic DWIA model for photonuclear reactions using
the relativistic mean field theory for the bound state and the Pauli reduction
of the scattering state which is calculated from a relativistic optical
potential. Results for the 12C(gamma,p) and 16O(gamma,p) differential cross
sections and photon asymmetries are displayed in a photon energy range between
60 and 257 MeV, and compared with nonrelativistic DWIA calculations. The
effects of the spinor distortion and of the effective momentum approximation
for the scattering state are discussed. The sensitivity of the model to
different prescriptions for the one-body current operator is investigated. The
off-shell ambiguities are large in (gamma,p) calculations, and even larger in
(gamma,n) knockout.Comment: LaTeX2e, 18 pages, and 6 figure
Channel Coupling in Reactions
The sensitivity of momentum distributions, recoil polarization observables,
and response functions for nucleon knockout by polarized electrons to channel
coupling in final-state interactions is investigated using a model in which
both the distorting and the coupling potentials are constructed by folding
density-dependent effective interactions with nuclear transition densities.
Calculations for O are presented for 200 and 433 MeV ejectile energies,
corresponding to proposed experiments at MAMI and TJNAF, and for C at 70
and 270 MeV, corresponding to experiments at NIKHEF and MIT-Bates. The relative
importance of charge exchange decreases as the ejectile energy increases, but
remains significant for 200 MeV. Both proton and neutron knockout cross
sections for large recoil momenta, MeV/c, are substantially
affected by inelastic couplings even at 433 MeV. Significant effects on the
cross section for neutron knockout are also predicted at smaller recoil
momenta, especially for low energies. Polarization transfer for proton knockout
is insensitive to channel coupling, even for fairly low ejectile energies, but
polarization transfer for neutron knockout retains nonnegligible sensitivity to
channel coupling for energies up to about 200 MeV. The present results suggest
that possible medium modifications of neutron and proton electromagnetic form
factors for can be studied using recoil
polarization with relatively little sensitivity due to final state
interactions.Comment: Substantially revised version accepted by Phys. Rev. C; shortened to
49 pages including 21 figure