11 research outputs found
Detection of long repeat expansions from PCR-free whole-genome sequence data
Identifying large expansions of short tandem repeats (STRs) such as those that cause amyotrophic lateral sclerosis (ALS) and fragile X syndrome is challenging for short-read whole-genome sequencing (WGS) data. A solution to this problem is an important step towards integrating WGS into precision medicine. We have developed a software tool called ExpansionHunter that, using PCR-free WGS short-read data, can genotype repeats at the locus of interest, even if the expanded repeat is larger than the read length. We applied our algorithm to WGS data from 3,001 ALS patients who have been tested for the presence of the C9orf72 repeat expansion with repeat-primed PCR (RP-PCR). Compared against this truth data, ExpansionHunter correctly classified all (212/212, 95% CI [0.98, 1.00]) of the expanded samples as either expansions (208) or potential expansions (4). Additionally, 99.9% (2,786/2,789, 95% CI [0.997, 1.00]) of the wild type samples were correctly classified as wild type by this method with the remaining three samples identified as possible expansions. We further applied our algorithm to a set of 152 samples where every sample had one of eight different pathogenic repeat expansions including those associated with fragile X syndrome, Friedreich's ataxia and Huntington's disease and correctly flagged all but one of the known repeat expansions. Thus, ExpansionHunter can be used to accurately detect known pathogenic repeat expansions and provides researchers with a tool that can be used to identify new pathogenic repeat expansions. The software is licensed under GPL v3.0 and the source code is freely available on GitHub
Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies
Over the last 40 years, great progress has been made in treating childhood and adult cancers. However, this progress has come at an unforeseen cost, in the form of emerging long-term effects of anthracycline treatment. A major complication of anthracycline therapy is its adverse cardiovascular effects. If these cardiac complications could be reduced or prevented, higher doses of anthracyclines could potentially be used, thereby further increasing cancer cure rates. Moreover, as the incidence of cardiac toxicity resulting in congestive heart failure or even heart transplantation dropped, the quality and extent of life for cancer survivors would improve. We review the proposed mechanisms of action of anthracyclines and the consequences associated with anthracycline treatment in children and adults. We summarise the most promising current strategies to limit or prevent anthracycline-induced cardiotoxicity, as well as possible strategies to prevent existing cardiomyopathy from worsenin
An integrated encyclopedia of DNA elements in the human genome.
The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research