491 research outputs found
Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils
The prevalence of four alkane monooxygenase genotypes (Pseudomonas putida GPo1, Pp alkB; Rhodococcus sp. strain Q15, Rh alkB1 and Rh alkB2; and Acinetobacter sp. strain ADP-1, Ac alkM) in hydrocarbon-contaminated and pristine soils from the Arctic and Antarctica were determined by both culture-independent (PCR hybridization analyses) and culture-dependent (colony hybridization analyses) molecular methods, using oligonucleotide primers and DNA probes specific for each of the alk genotypes. PCR hybridization of total soil community DNA detected the rhodococcal alkB genotypes in most of the contaminated (Rh alkB1, 18/20 soils; Rh alkB2, 13/20) and many pristine soils (Rh alkB1, 9/10 soils; Rh alkB2, 7/10), while Pp alkB was generally detected in the contaminated soils (15/20) but less often in pristine soils (5/10). Ac alkM was rarely detected in the soils (1/30). The colony hybridization technique was used to determine the prevalence of each of the alk genes and determine their relative abundance in culturable cold-adapted (5°C) and mesophilic populations (37°C) from eight of the polar soils. The cold-adapted populations, in general, possessed relatively higher percentages of the Rh alkB genotypes (Rh alkB1, 1.9% (0.55); Rh alkB2, 2.47% (0.89)), followed by the Pp alkB (1.13% (0.50)), and then the Ac alkM (0.53% (0.36)). The Rh alkB1 genotype was clearly more prevalent in culturable cold-adapted bacteria (1.9% (0.55)) than in culturable mesophiles (0.41 (0.55)), suggesting that cold-adapted bacteria are the predominant organisms possessing this genotype. Overall, these results indicated that (i) Acinetobacter spp. are not predominant members of polar alkane degradative microbial communities, (ii) Pseudomonas spp. may become enriched in polar soils following contamination events, and (iii) Rhodococcus spp. may be the predominant alkane-degradative bacteria in both pristine and contaminated polar soil
Spin-filtering and charge- and spin-switching effects in a quantum wire with periodically attached stubs
Spin-dependent electron transport in a periodically stubbed quantum wire in
the presence of Rashba spin-orbit interaction (SOI) is studied via the
nonequilibrium Green's function method combined with the Landauer-Buttiker
formalism. The coexistence of spin filtering, charge and spin switching are
found in the considered system. The mechanism of these transport properties is
revealed by analyzing the total charge density and spin-polarized density
distributions in the stubbed quantum wire. Furthermore, periodic spin-density
islands with high polarization are also found inside the stubs, owing to the
interaction between the charge density islands and the Rashba SOI-induced
effective magnetic field. The proposed nanostructure may be utilized to devise
an all-electrical multifunctional spintronic device.Comment: 4 pages, 4 figure
Spin dependence in high elastic pp and np scattering
Using the polarized proton capability of the Argonne ZGS the authors recently made 90 degrees /sub cm/ measurements of elastic pp scattering from 6 to 11.75 GeV/c, determining the parallel and anti- parallel pure initial spin state cross sections and the associated spin-spin parameter A/sub nn/ with the spins normal to the scattering plane. They find that the parallel to anti-parallel cross section ratio rises dramatically from 1.2+or-.06 at p/sub t//sup 2/=3.3 (GeV /c)/sup 2/ to 3.2+or-.4 at 4.8 (GeV/c)/sup 2/, similar to the p/sub T //sup 2/ dependence previously observed at the fixed laboratory momentum of 11.75 GeV/c. They have also extended the measurements at 6 GeV/c and find that A/sub nn/ has a small but sharp rise at 90 degrees /sub cm/. In addition a month of 12 GeV/c polarized deuteron acceleration in the ZGS enabled them to measure two A/sub nn/ at two points at 6 GeV/c for np elastic scattering: A/sub nn/=-.17+or-.04 at p/sub T//sup 2/=.8, A/sub nn/=-.19+or-.05 at P/sub T//sup 2/=1.0. These values are opposite in sign from the pp results at the same momentum. (4 refs)
Exact spectra, spin susceptibilities and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice
Exact spectra of periodic samples are computed up to .
Evidence of an extensive set of low lying levels, lower than the softest
magnons, is exhibited.
These low lying quantum states are degenerated in the thermodynamic limit;
their symmetries and dynamics as well as their finite-size scaling are strong
arguments in favor of N\'eel order.
It is shown that the N\'eel order parameter agrees with first-order spin-wave
calculations. A simple explanation of the low energy dynamics is given as well
as the numerical determinations of the energies, order parameter and spin
susceptibilities of the studied samples. It is shown how suitable boundary
conditions, which do not frustrate N\'eel order, allow the study of samples
with spins.
A thorough study of these situations is done in parallel with the more
conventional case .Comment: 36 pages, REVTeX 3.0, 13 figures available upon request, LPTL
preprin
Endogenous Risks and Learning in Climate Change Decision Analysis
We analyze the effects of risks and learning on climate change decisions. A two-stage, dynamic, climate change stabilization problem is formulated. The explicit incorporation of ex-post learning induces risk aversion among ex-ante decisions, which is characterized in linear models by VaR- and CVaR-type risk measures. Combined with explicit introduction of "safety" constraints, it creates a "hit-or-miss" type decision-making situation and shows that, even in linear models, learning may lead to either less-or more restrictive ex-ante emission reductions. We analyze stylized elements of the model in order to identify the key factors driving outcomes, in particular, the critical role of quantiles of probability distributions characterizing key uncertainties
Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions
Excess contributions to the free energy due to interfaces occur for many
problems encountered in the statistical physics of condensed matter when
coexistence between different phases is possible (e.g. wetting phenomena,
nucleation, crystal growth, etc.). This article reviews two methods to estimate
both interfacial free energies and line tensions by Monte Carlo simulations of
simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid
exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is
based on thermodynamic integration. This method is useful to study flat and
inclined interfaces for Ising lattices, allowing also the estimation of line
tensions of three-phase contact lines, when the interfaces meet walls (where
"surface fields" may act). A generalization to off-lattice systems is described
as well.
The second method is based on the sampling of the order parameter
distribution of the system throughout the two-phase coexistence region of the
model. Both the interface free energies of flat interfaces and of (spherical or
cylindrical) droplets (or bubbles) can be estimated, including also systems
with walls, where sphere-cap shaped wall-attached droplets occur. The
curvature-dependence of the interfacial free energy is discussed, and estimates
for the line tensions are compared to results from the thermodynamic
integration method. Basic limitations of all these methods are critically
discussed, and an outlook on other approaches is given
Protons in near earth orbit
The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured
by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at
an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is
parameterized by a power law. Below the geomagnetic cutoff a substantial second
spectrum was observed concentrated at equatorial latitudes with a flux ~ 70
m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated
trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01
The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics
experiment that will study cosmic rays in the to range and will be installed on the International Space Station
(ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the
space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected
cosmic ray triggers. Part of the \emph{Mir} space station was within the
AMS-01 field of view during the four day \emph{Mir} docking phase of this
flight. We have reconstructed an image of this part of the \emph{Mir} space
station using secondary and emissions from primary cosmic rays
interacting with \emph{Mir}. This is the first time this reconstruction was
performed in AMS-01, and it is important for understanding potential
backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor
stylistic and grammer change
- …