26 research outputs found

    Low- and high-mass components of the photon distribution functions

    Get PDF
    The structure of the general solution of the inhomogeneous evolution equations allows the separation of a photon structure function into perturbative (``anomalous") and non-perturbative contributions. The former part is fully calculable, and can be identified with the high-mass contributions to the dispersion integral in the photon mass. Properly normalized ``state" distributions can be defined, where the \gamma\to\qqbar splitting probability is factored out. These state distributions are shown to be useful in the description of the hadronic event properties, and necessary for a proper eikonalization of jet cross sections. Convenient parametrizations are provided both for the state and for the full anomalous parton distributions. The non-perturbative parts of the parton distribution functions of the photon are identified with the low-mass contributions to the dispersion integral. Their normalizations, as well as the value of the scale Q0Q_0 at which the perturbative parts vanish, are fixed by approximating the low-mass contributions by a discrete, finite sum of vector mesons. The shapes of these hadronic distributions are fitted to the available data on F2γ(x,Q2)F_2^\gamma(x,Q^2). Parametrizations are provided for Q0=0.6Q_0=0.6\,GeV and Q0=2Q_0=2\,GeV, both in the DIS and the MS\overline{\mathrm{MS}} factorization schemes. The full parametrizations are extended towards virtual photons. Finally, the often-used ``FKP-plus-TPC/2γ2\gamma" solution for F2γ(x,Q2)F_2^\gamma(x,Q^2) is commented upon.Comment: 33 pages, Latex, 6 Z-compressed and uuencoded figure

    New Parton Distribution Functions for the Photon

    Full text link
    We present new improved parton distributions for the photon. We fit {\bf all} available data on the photon structure function, F2γ(x,Q2)F^{\gamma}_{2}(x,Q^2), with Q23Q^2\ge 3 GeV2^2, in order to determine the quark distributions. We also pay particular attention to the gluon distribution in the photon, gγ(x,Q2)g^{\gamma}(x,Q^2), which has been poorly constrained in earlier analyses which only include structure function data. We use large pTp_T jet production in γγ\gamma \gamma collisions from TRISTAN to constrain gγg^\gamma . We also see what information can be gleaned from γp\gamma p collisions at HERA on gγg^{\gamma} and on the quark distributions at large xx, where there are no structure function data. We review future prospects of elucidating the parton distributions of the photon.Comment: 33 pages, 8 figures, uses eps

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Chapter 5: Physics of energetic ions

    Full text link

    Overview of recent physics results from the National Spherical Torus Experiment (NSTX)

    Full text link

    Symbolic State-Space Exploration and Guard Generation in Supervisory Control Theory

    No full text
    Supervisory Control Theory (SCT) is a model-based framework for automatically synthesizing a supervisor that minimally restricts the behavior of a plant such that given specifications is fulfilled. The main obstacle which prevents SCT from having a major industrial breakthrough is that the supervisory synthesis, consisting of a series of reachability tasks, suffers from the state-space explosion problem. To alleviate this problem, a well-known strategy is to represent and explore the state-space symbolically by using Binary Decision Diagrams. Based on this principle, an alternative symbolic state-space traversal approach, depending on the disjunctive partitioning technique, is presented in this paper. In addition, the approach is adapted to the prior work, the guard generation procedure, to extract compact propositional formulae from a symbolically represented supervisor. These propositional formulae, referred to as guards, are then attached to the original model, resulting in a modular and comprehensible representation of the supervisor
    corecore