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Department of Theoretical Physics 2

University of Lund, Lund, Sweden

E-mail: torbjorn@thep.lu.se

Abstract

The structure of the general solution of the inhomogeneous evolution equa-
tions allows the separation of a photon structure function into perturbative
(“anomalous”) and non-perturbative contributions. The former part is fully
calculable, and can be identified with the high-mass contributions to the
dispersion integral in the photon mass. Properly normalized “state” distri-
butions can be defined, where the γ → qq splitting probability is factored
out. These state distributions are shown to be useful in the description of
the hadronic event properties, and necessary for a proper eikonalization of
jet cross sections. Convenient parametrizations are provided both for the
state and for the full anomalous parton distributions. The non-perturbative
parts of the parton distribution functions of the photon are identified with
the low-mass contributions to the dispersion integral. Their normalizations,
as well as the value of the scale Q0 at which the perturbative parts vanish,
are fixed by approximating the low-mass contributions by a discrete, finite
sum of vector mesons. The shapes of these hadronic distributions are fit-
ted to the available data on F γ

2 (x,Q2). Parametrizations are provided for
Q0 = 0.6 GeV and Q0 = 2 GeV, both in the DIS and the MS factorization
schemes. The full parametrizations are extended towards virtual photons.
Finally, the often-used “FKP-plus-TPC/2γ” solution for F γ

2 (x,Q2) is com-
mented upon.
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1 Introduction

Inclusive cross sections, such as deep-inelastic electron–photon scattering eγ → e + X
or high-p⊥ jet production in two-photon collisions γγ → jet + X, are fully expressed in
terms of the parton distribution functions (PDFs) of the photon fγa (x,Q2) (for recent
reviews on the photon structure functions see e.g. refs. [1, 2, 3, 4, 5, 6]). Correspondingly,
such measurements allow, in principle, a unique determination of the PDFs of the photon.
However, already for the simplest determination, namely the extraction of F γ

2 (x,Q2) from
deep-inelastic electron–photon scattering, additional information about the hadronic final
state is necessary [7]. The reason is simple: in contrast to lepton–nucleon scattering,
where (x,Q2) are fixed by the measurement of the outgoing lepton solely, in eγ scattering
x usually can only be determined through a reconstruction of the hadronic energy W
from the visible one by virtue of the relation x = Q2/(W 2 + Q2). Clearly, an exclusive
description of the event properties is not only of interest for acceptance corrections but
provides also additional insight in the structure of the photon.

In this paper we shall investigate the photon-to-qq splitting probability and define
(normalized) “state” distributions where this probability factor is split off. We shall
show that the use of these state distributions is of great advantage in obtaining a correct
description of the hadronic final state, notably of the photon remnants and the initial-
state gluon radiation in parton-shower programs. We shall see that the state distributions
enter also the calculation of jet cross sections at high energies where unitarity corrections
have to be taken into account.

Furthermore, we shall show how to obtain a constrained parametrization of the (in-
clusive) PDFs of the photon. Current parametrizations either are fully unconstrained, i.e.
all parameters are fitted to F γ

2 data [8], or rely on severe prejudices about the input dis-
tributions, such as approximating these by the ones of the pion [9, 10] or modelling them
by the quark–parton results (box-diagram) with the quark masses as free parameters [11].
By contrast, the shapes of our input distributions are determined by the F γ

2 data, while
the normalizations are constrained. There exists a one-to-one relation between the size of
the non-perturbative part and the scale Q0 introduced to separate the non-perturbative
and the perturbative parts. This scale should be universal, i.e. process-independent and
can, for example, be constrained by a study of the γp total cross section [12]. We also
investigate the sensitivity of the PDFs to the photonic factorization scheme associated
with the presence of a direct contribution Cγ to F γ

2 . The current analysis updates our
old parametrization of the photon PDFs [12].

Next we discuss the dependence of the PDFs of the photon on its mass (virtuality)
P 2, i.e. the so-called target-mass effects. Our parametrization can, in fact, also be used
for the PDFs of a virtual photon, and we shall outline the assumptions that are behind
this. Effects of a non-zero virtuality have attracted considerable interest [13, 14, 4, 15,
16, 17, 18], but no explicit (analytic) parametrization was available up to now.

The outline of the paper is as follows. In the next section we first discuss the photon-
to-qq splitting and the issues of introducing a scale Q0 to separate low-mass contributions
from perturbatively calculable high-mass contributions. The latter, the so-called anoma-
lous contributions, are then expressed in terms of “state distributions” that enter the
description of the hadronic event (section 2.1), the eikonalization of jet cross sections
(section 2.2), and the virtual PDFs (section 2.3). Section 3 contains details about the
parametrizations of the parameter-free state distributions and the anomalous distribu-
tions. The small-x behaviour of the distribution functions is outlined. In section 4 we
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discuss the normalization of the non-perturbative (low-mass) contributions to the pho-
tonic PDFs (“hadronic distributions”) and compare our fits to the F γ

2 data. Finally we
comment upon the often-used approximation of F γ

2 by the sum of the (Q2-independent)
TPC/2γ parametrization [19] and the QCD expression of FKP [20]. Our results are sum-
marized in section 5. There we also discuss further aspects of our separation of the photon
distribution functions into long-distance and short-distance components, in particular the
connection with the representation of a photonic PDF as a dispersion integral in the
photon mass.

2 Separation of the non-perturbative part

Perturbative QCD predicts only the Q2 evolution of the PDFs of the photon fγi (x,Q2),
via a set of inhomogeneous differential equations of the first kind. Hence the solutions
fγi (x,Q2) require the specification of the PDFs at some Q2 = Q2

0. It is well known
that these “input” distributions fγi (x,Q2

0) have to have a considerable “hard” component

if Q0 is chosen to be a typical hadronic input scale (Q0
>
∼ 2 GeV). This is quite in

contrast to hadronic PDFs which vanish in a powerlike way ∝ (1 − x)p (p
>
∼ 1) for

x → 1. Correspondingly, there is no unique guiding principle as to what the photonic
input distributions should look like. Rather, parametrizations starting at large Q0 [8, 11]
are obtained by just fitting the parameters of the input distributions fγa (x,Q2

0) (shapes and
normalizations) to the available F γ

2 data. Moreover, since these data are so far restricted
to large x, basically no constraint on the gluon distribution of the photon exists today in
such an approach.

Lowering the starting scale Q0 to about 0.5–0.7 GeV, it is, however, possible to describe
the F γ

2 data with photonic PDFs obtained from a purely hadronic input [9, 12, 10]. The
latter is usually estimated by the PDFs of the pion using vector-meson-dominance (VMD)
and the additive quark model. The recent next-to-leading-order parametrizations AFG
[10] and GRV [9] essentially differ in the ansatz to take the photon to be a coherent [10] or
incoherent [9] superposition of vector mesons. Both are parametrizations of the inclusive
PDFs of the photon. Our aim [12] is to obtain PDFs where the probability for the photon
to fluctuate into a hadronic state is made explicit. Firstly, this allows us to constrain the
normalizations of the non-perturbative input distributions, while the shapes are fitted to
F γ

2 data. Secondly, we can trace the complete evolution of the parton showering, otherwise
hidden in the expression of fγi (x,Q2). Thirdly, differences in the remnant structure of the
photon can be respected. Finally, our parametrizations hold also for a virtual photon, to
which they can easily be applied because the parametrizations are analytic in both P 2

and Q2. On the other hand, our parametrizations are leading-order ones only.
Analogously to our decomposition of the γp total cross section

σγptot = σγpdir + σγpVMD + σγpanom , (1)

we decompose the PDFs of the photon as

fγa (x,Q2) = fγ,dir
a (x,Q2) + fγ,VMD

a (x,Q2, Q2
0) + fγ,anom

a (x,Q2;Q2
0) . (2)

The ansatz (1), or eq. (2), is based on the assumption that there exists a scale Q0 which
divides the spectrum of γ → qq fluctuations: above Q0 these can be described pertur-
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batively1 (“anomalous” term in eqs. (1) and (2)), while below Q0 the fluctuations are
assumed to give vector-meson states.

A reminder of the familiar scale ambiguity problem may be in place. In this paper
we work throughout with the deep-inelastic-scattering convention in mind, where the
Q2 scale is set by the virtuality of the probing photon. Fluctuations γ ↔ qq of the
probed photon are resolved as long as the “scale” k of these fluctuations is below Q.
However, the precise physics definition of k is left unspecified. When PDFs extracted
from deep inelastic scattering are applied to other processes, such as qq′ → qq′ high-p⊥
jet production, the choice of relevant scale Q is ambiguous. It could be associated with the
transverse momentum p⊥ of the jets, or some multiple thereof. Conversely, our transverse
momentum cut-off, used in [12] to separate between direct, simple VMD (i.e. ρ0, ω, and
φ) and anomalous processes, is of the order of the Q0 ∼ 0.6 GeV used in this paper, but
the two could well differ by some amount.

The first term in eq. (2) describes the (properly normalized) probability distribution
of a photon to remain a photon

fγ,dir
a (x,Q2) = Z3 δaγ δ(1− x) , (3)

where

Z3 = 1−
∑

a=q,q,g

∫ 1

0
dx x

{
fγ,VMD
a (x,Q2, Q2

0) + fγ,anom
a (x,Q2;Q2

0)
}
. (4)

Properly speaking, also fluctuations γ ↔ `+`−, ` = e, µ or τ , should be taken into
account for Z3. This contribution is fully perturbatively calculable. In practice, Z3 ≈ 1
is a sufficiently good approximation for all applications.

The PDFs of the photon, being the solution of an inhomogeneous evolution equation
(or, more precisely, a system of equations) can always be written as the sum of two terms

fγa (x,Q2)− fγ,dir
a (x,Q2) = fγ,PT

a (x,Q2, Q2
0) + fγ,NP

a (x,Q2, Q2
0) . (5)

The first term is a particular solution of the inhomogeneous equation with the boundary
condition

fγ,PT
a (x,Q2

0, Q
2
0) = 0 . (6)

The second term, a general solution of the corresponding homogeneous evolution equation
needs a (non-perturbative) input distribution at Q2 = Q2

0

fγ,NP
a (x,Q2

0, Q
2
0) = FNP

a (x) . (7)

While mathematically the decomposition (5) is valid for any Q2
0, for physics reasons

we want to identify fγ,PT
a with the perturbatively calculable distributions fγ,anom

a arising
from the point-like coupling of the photon to a quark–antiquark pair. These distributions
can be expressed as an integral of “state” distribution functions fγ,qq

a (x,Q2; k2):

fγ,anom
a (x,Q2;Q2

0) =
αem

2π

∑
q

2e2q

∫ Q2

Q2
0

dk2

k2
fγ,qq
a (x,Q2; k2) , (8)

which obey the standard, homogeneous evolution equations with the boundary condition

fγ,qq
a (x, k2; k2) = fγ,qq

a (x) ≡
3

2

(
x2 + (1− x)2

)
(δaq + δaq) . (9)

1A similar definition of the perturbative part of F γ2 (x,Q2) is due to FKP [20]. A comparison is
postponed to section 4.5.
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The solution (8) can be understood as follows. The probability for the photon to
branch into a qq state at some high scale k is given by (αem/2π) 2e2q dk2/k2. Once the
photon has fluctuated, the possibility of additional QCD evolution between k and Q is just
given by the standard evolution equations. This evolution conserves total momentum, so
that ∑

a

∫ 1

0
dxxfγ,qq

a (x,Q2; k2) = 1 (for Q ≥ k) , (10)

where the sum now runs over the gluon and all the quark and antiquark species.
Similarly, fγ,NP

a should describe the partonic content of the photon that has fluctuated
to a vector meson, i.e.

fγ,VMD
a (x,Q2, Q2

0) =
∑
V

4παem

f 2
V

fγ,Va (x,Q2, Q2
0) . (11)

Here 4παem/f
2
V gives the probability for the photon to fluctuate into the vector meson V ,

while fγ,Va obeys a momentum sum rule just as fγ,qq
a in eq. (10). Normally we let the sum

run over ρ0, ω and φ, with the first responsible for the bulk of the contribution.
In passing we note that eq. (10) yields

Z3 = 1−
∑
V

4παem

f 2
V

−
αem

2π

∑
q

2e2q ln

(
Q2

Q2
0

)
. (12)

It is convenient to think of the anomalous component as a continuous spectrum of states,
characterized by the flavour q and the scale of creation k, just as the VMD components
give a discrete spectrum of states. The probability (αem/2π) 2e2q dk2/k2 in eq. (8) is
therefore the equivalent of the VMD couplings 4παem/f

2
V in eq. (11).

2.1 Hadronic event properties

For inclusive quantities, such as the high-p⊥ jet rate in γγ collisions, only the full parton
distributions fγa (x,Q2) are of interest. However, for an exclusive description of event
properties, states with different initial flavours and k values behave differently [21, 12]. A
physically transparent description of the complete hadronic final state therefore requires
that fγa (x,Q2) be available subdivided into the fγ,anom

a (x,Q2) and fγ,VMD
a (x,Q2) parts,

with these in their turn subdivided as an integral or sum of state distributions fγ,qq
a (x,Q2)

and fγ,Va (x,Q2). Let us elaborate on this.
1. Hard processes (at a scale p⊥ ∼ Q) in photon-induced reactions are given by the

usual 2 → 2 partonic processes, where the parton a in the photon is selected according
to the inclusive distributions fγa (x,Q2). In addition there are the processes where the
photon interacts directly, i.e. via fγ,dir

a (x,Q2). For consistency, the direct cross sections
have to be cut off at the same Q0 as is used to define the anomalous PDFs, i.e. the cut-off
will, in general, be different for different parametrizations and should be known!

2. The 2 → 2 partonic processes are then supplemented by initial (and final) state
parton showers. In the case of partons in the photon, the inhomogeneous evolution equa-
tions have to be used. However, parametrizations of the inclusive PDFs of the photon
are not guaranteed to be positive-definite at the infrared cutoff used in the parton-shower
programmes. Nor is the shape at Q0 constrained in any way to correspond to a hadronic
distribution, so that it makes sense to approximate the photon remnants by those of a
hadron. On the other hand, both demands are fulfilled if fγa (x,Q2) is split as in eqs. (2),
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(8) and (11). Moreover, existing parton shower programmes for homogeneous evolution,
made and tested for hadron-induced reactions, can then be used, since both fγ,qq

a (x,Q2; k2)
and fγ,Va (x,Q2) evolve according to the homogeneous equations. The separation (2) also
ensures that the “intrinsic” transverse momentum k⊥ of the initial parton in the pho-
ton can be correctly generated: a roughly Gaussian primordial k⊥ distribution of width
∼ 0.5 GeV for low-mass hadronic fluctuations of the photon, and a dk2

⊥/k
2
⊥ distribution

for high-mass fluctuations.

2.2 Eikonalization of jet cross-sections

The state distributions fγ,qq
a (x,Q2; k2) and fγ,Va (x,Q2) enter also the calculation of total

photon-induced cross sections at high energies. There (mini)jet cross sections rise much
faster than allowed by the Froissart bound and unitarization corrections have to be taken
into account. Unitarization effects can be estimated by the eikonal formula. Respecting
the probability for the photon to be in different hadronic fluctuations, the correct formula
for e.g. γp interactions is

σγpinel(s) = σγpdir(s) +
∑
V

4παem

f 2
V

∫
d2b

{
1− exp

[
−2 ImχV p(s, b)

]}
+
αem

2π

∑
q

2e2q

∫
Q2

0

dk2
⊥

k2
⊥

∫
d2b

{
1− exp

[
−2 Imχqqp(s, b, k2

⊥)
]}

. (13)

The state distributions enter the hard cross sections, e.g.

σqqp
hard(s; k⊥) =

∫
dx1

∫
dx2

∫
dp2
⊥f

γ,qq
i (x1, p

2
⊥; k⊥)fp

j (x2, p
2
⊥)

dσ̂ij
dp2
⊥

θ(p⊥ − k⊥) , (14)

which in turn enter the eikonals χi in eq. (13), e.g. χqqp = Aqqpσqqp, where Aqqp(b, k2
⊥) is

an overlap function and σqqp(s, k2
⊥) = σqqp

soft(s, k
2
⊥) + σqqp

hard(s, k
2
⊥).

2.3 PDFs of a virtual photon

Finally, the separation (2) is useful to study the effects of a non-zero photon virtuality
P 2. Generalized vector-meson dominance suggests the following dispersion relation in k2:

fγ
?

a (x,Q2, P 2) =
∫ Q2

0

dk2

k2

(
k2

k2 + P 2

)2
αem

2π

∑
q

2e2q f
γ,qq
a (x,Q2; k2) . (15)

The integration from zero to Q2
0 can be approximated by the (low-mass) vector-meson

contributions, which show the usual fast P 2 fall-off predicted by pole dominance:

fγ
?,VMD

a (x,Q2, P 2) =
∑
V

(
m2
V

m2
V + P 2

)2
4παem

f 2
V

fγ,Va (x,Q2, P 2
0 ) . (16)

The pole-dominance factor takes the reduced probability for a virtual photon to fluctuate
into a vector meson into account. On the other hand, the PDFs of a virtual vector meson
are completely unknown. The simplest choice, namely to identify them with those of
a real pion, i.e. taking P 2

0 = Q2
0 in eq. (16) [18], leads to unphysically large hadronic

contributions at small x. Moreover, this choice does not guarantee the vanishing of the
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PDFs as P 2 → Q2, as should be the case up to power-suppressed terms. Our choice
P 2

0 = max(P 2, Q2
0) is based both on this limit and on the expectation that the PDFs

should become more valence-like as P 2 increases.
The anomalous contribution is given by the integration k2 > Q2

0 in eq. (15) and we
approximate it by

fγ
?,anom

a (x,Q2, P 2) =
∫ Q2

max (P 2,Q2
0)

dk2

k2

αem

2π

∑
q

2e2q f
γ,qq
a (x,Q2; k2)

≡ fγ,anom
a (x,Q2, P 2

0 ) . (17)

The ansatz (17) guarantees that the virtual PDFs

fγ
?

a (x,Q2, P 2) = fγ,dir
a (x,Q2, P 2) + fγ

?,VMD
a (x,Q2, P 2) + fγ

?,anom
a (x,Q2;P 2) (18)

are correct in the region Λ2 � P 2 � Q2: there the virtual PDFs can be calculated exactly
and QCD predicts them to be given by eq. (8) with Q2

0 replaced by P 2 [14]. The PDFs
of eq. (18) are exact also in the limit P 2 → 0 where they approach the real PDFs.

On the other hand, for P 2 of the order of Q2
0, i.e. in the interesting “cross-over” region

P 2 ∼ m2
ρ, the P 2 dependence of the anomalous contribution is less certain. A power-like

dependence might be present that could be estimated via eq. (15). Our choice of P 2
0

in eq. (17) is motivated by (i) simplicity and (ii) the demand for a smooth transition
towards higher P 2, but also alternatives like P 2

0 = P 2 + Q2
0 would have fulfilled these

demands. Uncertainties arising from this choice may be estimated by varying P 2
0 , say,

from max(P 2, Q2
0/2) to max(P 2, 2Q2

0).
As P 2 approaches Q2, the concept of virtual PDFs breaks down since powerlike cor-

rections ∝ (P 2/Q2)p then become important besides the logarithmic ones. Nevertheless,
the logarithmically enhanced terms of the P 2 → Q2 limit exhibit the correct behaviour:
the quark distributions approach the box-diagram expression (quark–parton model re-
sult) [13], and the gluon distribution vanishes faster than the quark ones [4]. We finally
want to emphasize that our parametrization of the virtual PDFs is analytic in all vari-
ables and can hence be used easily. It is well known that hadronic distribution functions,
such as fγ,Va (x,Q2, P 2

0 ), depend on the two momentum scales Q2 and P 2
0 only through

the logarithmic integration of the coupling constant (see eq. (19) below). However, also
the solution of the inhomogeneous equation can be written in a similar form, see eq. (29)
below.

3 The perturbative part

3.1 The state distributions

The distributions fγ,qq
a (x,Q2; k2) depend on two momentum scales, Q and k. However,

the amount of evolution that occurs between these two scales is entirely characterized by
the logarithmic integration of the strong coupling constant

s = s(Q2, k2) =
∫ Q2

k2

dQ2

Q2

αs(Q
2)

2π
. (19)

In leading order s = (1/b) ln[ln(Q2/Λ2)/ ln(k2/Λ2)], where b = (33 − 2nf)/6. We have
here assumed that the number of flavours is fixed, e.g. nf = 4, but it is straightforward to
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split the Q2 range into subranges with different nf values and correspondingly matched
Λ(nf ) values. The number of flavours also enters in the fraction of the momentum carried
by gluons to that carried by quarks; here a matching between different nf values is less
transparent, but can still be attempted.

The parametrization of the quark distributions is divided into a valence and a sea
part. The sea part corresponds to the distributions fγ,qq

a for a 6= q, q, while the valence
part is the additional contribution obtained for a = q or a = q, i.e.

fγ,qq
q = fγ,qq

q = fγ,qq
q,val + fγ,qq

q,sea

fγ,qq
q′ = fγ,qq

q′ = fγ,qq
q,sea for q′ 6= q . (20)

As always in QCD, the solutions are too complex to be given in closed form. One
therefore has to resort to approximate parametrizations. We perform an evolution in x
space choosing a strategy similar to the one proposed by Odorico [22], wherein a large
number of evolution histories are traced by Monte Carlo methods. The evolved parton
densities are binned in x for several Q2 values. Thereafter the x shape is parametrized in
some simple form, and the Q2 dependence of these parameters is in turn parametrized.
The Minuit program [23] is used to find suitable parametrization coefficients, but with
frequent manual interaction to ensure a sensible behaviour. The fits have been made in
the range 10−4 ≤ x ≤ 1 and Q0 ≤ Q ≤ 2000Q0 (where Q0 ≈ 0.5 GeV), but the forms
have been chosen so that they can be used for all x. In regions where the distributions
are large, the typical accuracy of the parametrizations is 1%–2%.

The parametrizations are

xfγ,qq
q,val(x, s) =

(
cval1 x2 + cval2 (1− x)2 + cval3 x(1− x)

)
xc

val
4 (1− x2)c

val
5

xfγ,qq
a,sea(x, s) = csea1 xc

sea
2 (1− x)c

sea
3 xfγ,qq

a,sea,lo(x)

xfγ,qq
g (x, s) = cg1 x

cg2 ((1− x)(− lnx))c
g
3 xfγ,qq

g,lo (x) , (21)

where

xfγ,qq
a,sea,lo(x) =

8− 73x+ 62x2

9
(1− x) +

(
8x2

3
− 3

)
x lnx+ (2x− 1)x ln2 x (22)

xfγ,qq
g,lo (x) =

4 + 7x+ 4x2

3
(1− x) + 2x(1 + x) lnx (23)

and the coefficients ci are given in table 3.1.
Note that the shapes and normalizations of the parametrizations become exact in the

limit s → 0: the expression in eq. (9) is recovered in the limit s → 0 of the valence
distribution, and the gluon (sea) distribution approaches eq. (23) (eq. (22)) times 4s (s2).
Hence, the sea distribution vanishes faster than the gluon distribution, which in turn
vanishes faster than the valence one [4]. This is because 4sfγ,qq

g,lo (x) is obtained if the initial
quark-distribution in eq. (9) is convoluted with the q → qg splitting kernel. Similarly,
s2fγ,qq

a,sea,lo(x) is obtained if the first-order gluon-distribution in eq. (23) is convoluted with
the g → qq splitting kernel. Moreover, our parametrizations exhibit the correct large-x
behaviour, (1 − x)8s/3 for the valence distribution, (1 − x)1+8s/3 for the gluon one, and
(1− x)2+8s/3 for the sea one.

Analytic results can also be derived for the limit x→ 0. We find

xfγ,qq
q,val(x, s)→

3

2
exp

(
2s

3

)
I0(zv)
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a b c d e f g

cval1 1.5 – – −0.197 4.33 – –
cval2 1.5 2.10 – 3.29 – – –
cval3 – 5.23 – 1.17 – 19.9 –
cval4 1 – – 1.5 – – –
cval5 – 2.667 – – – – –
csea1 – – 1 4.54 8.19 8.05 –
csea2 – 1.54 – 1.29 – – –
csea3 – 2.667 – – – – –
cg1 – 4 – 4.76 15.2 – 29.3
cg2 – 2.03 – 2.44 – – –
cg3 – 1.333 – – – – –

Table 1: Coefficients of the state distributions parametrized in the form
ci = (a+ bs+ cs2)/(1 + ds+ es2 + fs3 + gs4).

xfγ,qq
g (x, s)→

8

9
h(s)

√
6s

y
I1(zg)

xfγ,qq
a,sea(x, s)→

8

27
h(s)

s

y
I2(zs) , (24)

where h(s) = exp [(−297− 2nf)s/54], zv = 2
√

4sy/3, zs = zg = 2
√

6ys, and y = ln(1/x).

Since Iν(z) → exp(z)/
√

2πz for z → ∞, the gluon and sea distributions grow as

exp 2
√

6s ln(1/x) at small x. However, for realistic x and Q2 values, the distributions are

far from being asymptotic, and the power-like parametrizations (21) are better suited.
The effects of quark masses have not been taken into account in the evolution. For

charm (and bottom), the sea distributions should therefore be modified. Different levels
of sophistication can be used. The simplest is to assume that branchings g → cc are
forbidden at scales below the charm mass, while mc can be neglected in the evolution
above threshold. In this context, mc can be thought of as an effective parameter, to
be adjusted for taking into account threshold effects [24]. In the region of small s, the
number of gluons increases like s, that of light sea quarks like s2, and that of charm sea
quarks like s2 − s2

c, with sc = s(max(k2,m2
c), k

2). For simplicity, one may thus assume

fγ,qq
c,sea(x, s) = θ(s− sc)

(
1−

(
sc

s

)2
)
fγ,qq

a,sea(x, s) , (25)

where θ(x) is the ordinary step function.
Also original splittings γ → cc (and γ → bb) should be suppressed by mass thresholds.

Again assuming a simple step threshold, one obtains fγ,cca (x,Q2; k2) = 0 for Q < mc, while
the distribution for Q > mc is given by the substitution

s = s(Q2, k2)→ s(Q2,max(k2,m2
c)) . (26)

3.2 The anomalous distributions

It would have been very convenient, had it been possible, to generate the full distribu-
tions in a simple way from the state ones above. Unfortunately, the expressions are too
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complicated to allow the dk2/k2 integral in eq. (8) to be carried out. The parametrization
of fγ,anom

a is therefore done separately from the ones given above.
The fγ,anom

a (x,Q2;Q2
0) distributions do depend both on the Q/Λ and the Q0/Λ ratio,

and not just on a single variable. However, it is possible to separate the two depen-
dences and to obtain a parametrization that is analytic in both Q and Q0. Hence, our
parametrization can easily be used for a virtual photon target.

To this end we introduce the functions f
γ,qq

a defined by:

f
γ,qq

a (x, s0) =
∫ s0

0
b ds

exp (−bs)

1− exp (−bs0)
fγ,qq
a (x, s) . (27)

Here s0 is defined analogously to s in eq. (19), i.e. s0 = (1/b) ln[ln(Q2/Λ2)/ ln(Q2
0/Λ

2)].

The f
γ,qq

a distributions can be seen as a weighted mean of the fγ,qq
a ones; in particular

f
γ,qq

a has a unit momentum sum,

∑
a

∫ 1

0
dxxf

γ,qq

a (x, s0) = 1 . (28)

The information on the fraction of photons that are split by γ → qq is thus only carried
by the prefactor proportional to ln(Q2/Q2

0) so that:

xfγ,anom
a (x,Q2;Q2

0) =
αem

2π

∑
q

2e2q ln

(
Q2

Q2
0

)
xf

γ,qq

a (x, s0) . (29)

The f
γ,qq

a have been parametrized in the same spirit as the fγ,qq
a ones, with due respect

to the limiting behaviours for s → 0. For the valence and sea parametrizations we take
the same functional form as in eq. (21), but for the gluon we choose

xf
γ,qq

g (x, s0) = cg1 x
cg2 (1− x2)c

g
3 xfγ,qq

g,lo (x) . (30)

This form is not exactly like that for the gluon state-distribution, rather ((1−x)(− ln x))c3

is replaced by (1 − x2)c3. We have attempted to use the same form in both cases, but
then failed to obtain reasonable fits. The limit s → 0 is again exact. The coefficients ci
are collected in table 2.

The small-x behaviour is again better described by a powerlike distribution over the
relevant x ranges, even though asymptotically the growth is weaker, for example

x fγ,anom
g (x,Q2, Q2

0)
x→0
→

αem

2π

∑
f

2e2f

 ln
Q2

Λ2

8bs

9y
exp

(
−

297− 8nf
27

s

)
I2(zg) . (31)

The charm (and bottom) seas are suppressed; close to threshold by a relative amount
1−(sc/s)

3, where sc = s(max(Q2
0,m

2
c), Q

2
0). (Note that this factor approaches unity faster

than the factor in eq. (25), as a consequence of having a spectrum of initial branchings at
different k2 scales.) For Q > mc, the charm sea is therefore assumed to be given by the
normal sea multiplied by this factor.

From the above formulae, the full distribution is built up by summing the contributions
from the allowed flavours as already specified in eq. (29). Branchings γ → cc (and γ → bb)
do not contribute below threshold. Above threshold, the charm contribution is obtained
by substituting max(Q2

0,m
2
c) for Q2

0 in the logarithmic prefactor and in the definition of
s.
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a b c d e f g

cval1 1.5 2.49 26.9 – 32.3 – –
cval2 1.5 −0.49 7.83 – 7.68 – –
cval3 – 1.5 – −3.2 7. – –
cval4 1 – – 0.58 – – –
cval5 – 2.5 – 10. – – –
csea1 – – 0.333 4.90 4.69 21.4 –
csea2 – −1.18 – 1.22 – – –
csea3 – 1.22 – – – – –
cg1 – 2 – 4. 7. – –
cg2 – −1.67 – 2. – – –
cg3 – 1.2 – – – – –

Table 2: Coefficients of the full distributions parametrized as in table 3.1.

3.3 The heavy-flavour contribution

The above treatment of heavy-flavour branchings γ → cc, bb is not unreasonable for jet
production in γγ collisions of real photons, Q2 = P 2 = 0 (with the rôle of hard scale here
taken by the transverse mass of the quarks). However, in the deep-inelastic-scattering
region, Q2 � P 2 ≈ 0, the kinematics constraint W 2 = Q2(1 − x)/x > 4m2

c implies that
the distribution can only be non-vanishing for x < Q2/(Q2 + 4m2

c). The large charm-
quark charge ensures that the charm contribution is very significant for the shape of the
F γ

2 (x,Q2) distribution.
For the charm contribution to F γ

2 , we have therefore based ourselves on the leading-
order “Bethe–Heitler” cross section for γ∗γ∗ → cc. (An additional charm contribution
comes from our sea parametrization, i.e. from g → cc branchings.) The full expression
is given in [25], but for our applications it is sufficient to use the approximation in [26],
valid in the limit 4x2P 2 � Q2:

xc(x,Q2) =
αem

2π
3
(

2

3

)2

x

{
βc [6x(1− x)− 1]

+ log

(
1 + βcηc

1− βcηc

)[
x2 + (1− x)2 + rcx(1− 3x)−

1

2
r2
cx

2
]

+
2x

Q2

2βcηc

1− β2
cη

2
c

[
(2− rc)m

2
cx− P

2x
]}

, (32)

with

rc =
4m2

c

Q2
, βc =

√
1−

4m2
c

W 2
, ηc =

√
1−

4x2P 2

Q2
, (33)

and correspondingly for b.
Some distance above the threshold, the Bethe–Heither formula gives essentially the

same contribution to F γ
2 as does the standard formulae presented in the previous section.

In the calculations, we have used fairly small c and b masses, mc = 1.3 GeV and
mb = 4.6 GeV, so that the charm contribution is large. On the other hand, the J/ψ and
Υ states are not included in the VMD sum over vector mesons. To first approximation,
these two effects should therefore cancel. The approach can be motivated by standard
duality arguments.
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4 The non-perturbative part

4.1 Normalization

We now turn to the hadronic input distributions fγ,Va (x) = fγ,Va (x,Q2
0, Q

2
0), cf. eq. (11).

Usually these are estimated by the pion PDFs using VMD and the additive quark model.
Of course, the PDFs of the qq “bound states” of the photon need not be the same as
those of real vector mesons. Moreover, the PDFs of the short-lived ρ0-meson may well
differ in shape from those of the long-lived pion. Therefore, in contrast to the GRV [9]
and AFG [10] parametrizations, we do not approximate the hadronic input distributions
fγ,Va (x) by the pion input distributions fπa (x), but rather constrain the shape of the input
distributions from data.

We do, however, use VMD to fix the normalization of the input distributions. Indeed,
for consistency with eq. (1) we cannot allow for an extra “K-factor” as is introduced in
refs. [9, 10] if the input scale Q0 corresponds to the simple ρ0, ω, φ VMD model. Based
on eqs. (5), (8) and (11) one has

fγa (x,Q2)− fγ,dir
a (x,Q2) =∑

V

4παem

f 2
V

fγ,Va (x,Q2, Q2
0) +

αem

2π

∑
q

2e2q

∫ Q2

Q2
0

dk2

k2
fγ,qq
a (x,Q2; k2) . (34)

The analogous decomposition (1) of the γp total cross section tells us that Q0 should be
of the order of 600 MeV if the sum over vector mesons includes only the three lowest-lying
states V1 = ρ0, ω, and φ. On the other hand, for larger values of Q0 more vector mesons
Vn have to be included:

∑
V=ρ0,ω,φ

e

fV
|V 〉 =⇒

N(Q0)∑
n=1

∑
V=ρ0,ω,φ

e

fVn
|Vn〉 . (35)

Since the VMD couplings of such higher-mass states are poorly known, mass effects be-
come more important. Moreover, the input distributions will anyhow be fitted, so we may
approximate

N(Q0)∑
n=1

∑
V=ρ0,ω,φ

4παem

f 2
Vn

fγ,Vna (x) ≈ K
∑

V=ρ0,ω,φ

4παem

f 2
V

f̃γ,Va (x) . (36)

In principle, for a given Q0, K = K(Q0) could be determined by repeating the γp total
cross-section analysis. In the following we will consider two cases, (i) Q0 = 0.6 GeV and
K = 1 fixed from the γp analysis, and (ii) Q0 = 2 GeV, where K will be fitted together
with the input distributions f̃(x) to the F γ

2 (x,Q2) data.
The normalization of the PDFs discussed so far still leaves us freedom of how to add

the vector mesons. For example, in the case of simple VMD:

|γ〉VMD =
∑

V=ρ,ω,φ

e

fV
|V 〉 =

√√√√ e2

f 2
ρ

+
e2

f 2
ω

(
e2u + e2d

)−1/2 (
eu |uu〉+ ed |dd〉

)
+

e

fφ
|ss〉 . (37)

The coherent superposition of vector mesons is obtained for eu = 2/3, ed = −1/3.
A completely SU3-symmetric coherent superposition would give fρ/fω = 1/3 and
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a Incoherent Coherent Coherent (naive SU3)
u-val (g2

ρ + g2
ω)/2 ≈ 0.248 4(g2

ρ + g2
ω)/5 ≈ 0.397 8g2

ρ/9 ≈ 0.404
u-sea g2

ρ + g2
ω + g2

φ ≈ 0.551 g2
ρ + g2

ω + g2
φ ≈ 0.551 4g2

ρ/3 ≈ 0.606
d-val (g2

ρ + g2
ω)/2 ≈ 0.248 (g2

ρ + g2
ω)/5 ≈ 0.099 2g2

ρ/9 ≈ 0.101

d-sea g2
ρ + g2

ω + g2
φ ≈ 0.551 g2

ρ + g2
ω + g2

φ ≈ 0.551 4g2
ρ/3 ≈ 0.606

s-val g2
φ ≈ 0.054 g2

φ ≈ 0.054 2g2
ρ/9 ≈ 0.101

s-sea g2
ρ + g2

ω + g2
φ ≈ 0.551 g2

ρ + g2
ω + g2

φ ≈ 0.551 4g2
ρ/3 ≈ 0.606

gluon g2
ρ + g2

ω + g2
φ ≈ 0.551 g2

ρ + g2
ω + g2

φ ≈ 0.551 4g2
ρ/3 ≈ 0.606

Table 3: The coefficients ca of (38) for coherent and incoherent superpositions of vector
mesons. Here g2

V = 4π/f 2
V .

fρ/fφ = −
√

2/3. This is close to the experimental numbers, but in particular φ pro-
duction seems suppressed compared to the above expectation. This is not unreasonable
in view of the larger s quark and φ meson masses. We therefore keep the VMD couplings
at their measured values, which we also use for the total cross section in eq. (1). An
incoherent superposition of u and d quarks corresponds to eu = ed = 1. At long time
scales, e.g. in “elastic” processes such as γp → V p, the ρ0 and ω vector mesons contain
equal amounts of uu and dd, i.e. the coherence at the γqq vertex is broken. It is therefore
conceivable to have either physics scenario, or some intermediate thereof, and both have
been used in the literature [1, 9, 10]. Here we favour the coherent superposition of u and
d quarks, in line with the argument that hard processes probe short time scales.

For the input distributions we assume an SU3-symmetric sea distribution s(x) and
denote by v(x) the input valence distribution such that Σ ≡

∑
q(xq(x) + xq̄(x)) =

2v(x) + 6s(x). The coefficients of the various hadronic input distributions fγ,VMD
a (x)

are summarized in table 3 for the three possibilities of photon decomposition discussed
above, and for K = 1. We have used an obvious notation, e.g.

fγ,VMD
a,val (x,Q2

0, Q
2
0) = αem ca,val v(x) , (38)

and our preferred choice corresponds to the middle column in table 3. For completeness,
we list also the expression of F2 in terms of s(x) and v(x) for this choice

1

αem
F γ,VMD

2 (x,Q2) =

[
34

45

(
4π

f 2
ρ

+
4π

f 2
ω

)
+

2

9

4π

f 2
φ

]
x v(x) +

4

3

∑
V=ρ,ω,φ

4π

f 2
V

x s(x)

= 0.3875 x v(x) + 0.735 x s(x) . (39)

We choose the following ansatz for the input valence distribution

x v(x) = Nv x
av(1− x)bv

[
1 + Cv

√
x
]

(40)

and analogous forms for the sea and gluon distributions. Note that, since we fix the nor-
malization of the hadronic input distributions using VMD, we can exploit two constraints,
namely the number of valence quarks and the momentum sum rule∫ 1

0
dx 2v(x) = 2 ;

∫ 1

0
dx

∑
a

x fa(x) = 1 . (41)
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4.2 Direct contribution

In contrast to the proton structure function F p
2 , the photon structure function F γ

2 receives
a direct contribution beyond LO accuracy, symbolically

F γ
2 (x,Q2) =

∑
q

e2q
[
fγq + fγq

]
⊗ Cq + fγg ⊗ Cg + Cγ . (42)

(Note that summation over q does not automatically include antiquarks as well; the
additional q contribution is reflected in a factor 2 in many of the subsequent formulae.)
In fact, at the relatively large x values currently probed, the inclusion of the direct term

Cγ(x) = 2
αem

2π
3
∑
q

e4q x

{[
x2 + (1− x)2

]
ln

1− x

x
+ 8x(1− x)− 1

}
(43)

is much more important than the modification in the Q2 evolution when going from
LO to NLO. Inclusion of Cγ defines the MS scheme, while Cγ = 0 defines the DIS
scheme. At any order in perturbation theory, the theoretical prediction for F2 is scheme-
dependent. This factorization-scheme dependence is reduced when including higher-order
contributions (i.e. when going from LO to NLO to NNLO etc.). Many cross sections in
γp and γγ are still calculated in LO accuracy. In order to investigate the factorization-
scheme dependence associated with a LO calculation we shall fit PDFs in LO for both
schemes

DIS : F γ
2 (x,Q2) = 2

∑
q

e2qf
γ
q (x,Q2)

MS : F γ
2 (x,Q2) = 2

∑
q

e2qf
γ
q (x,Q2) + Cγ(x) , (44)

although formally Cγ is of NLO. However, we only take that part of Cγ that is universal
[10], namely

Cγ(x) = 2
αem

2π
3
∑
q

e4q x
{[
x2 + (1− x)2

]
ln

1

x
+ 6x(1− x)− 1

}
. (45)

This modified expression follows from a careful analysis of the ladder diagrams, but can
also be obtained by simply imposing a t (and u) cut t0 on the box diagram to separate
the perturbative (point-like) from the non-perturbative (hadronic) parts resulting in

F γ,box
2 (x,Q2) =

2
αem

2π
3
∑
q

e4q x
{[
x2 + (1− x)2

]
ln
tmax − t0

t0
+ [6x(1− x)− 1]

(
1−

2t0
tmax

)}
(46)

with tmax = Q2/x. Upon dropping the higher-twist terms (∝ 1/Q2), eq. (46) yields
eq. (45). There is no point in keeping the higher-twist contribution in Cγ when neglecting
the further (unknown) higher-twist contributions to F γ

2 . Since charm (and bottom) are
included by the Bethe-Heitler formulae, they are not affected by the considerations in this
section. Hence the quark sum here only runs over u, d and s quarks.
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4.3 Low-Q0 fit

The F γ
2 data are not yet precise enough for the QCD scale parameter Λ to be fitted.

Therefore we fix (one-loop) Λ(nf = 3) = 230 MeV corresponding to Λ(nf = 4) = 200 MeV.
Moreover, for K = 1, Q0 = 0.6 GeV is fixed from our γp analysis. In the DIS scheme,
the simplest choice, a valence-like input (Ns = 0 and g(x) ∝ v(x) with v(x = 0) = 0),
results in a reasonable χ2 only for a considerably smaller Q0 ∼ 0.4 GeV. Therefore we
allow for sea-like input distributions. As the data do not require non-zero values for the
parameters as and Ci, cf. eq. (40), we simply put these parameters equal to zero. The bg
and bs are poorly constrained, and have therefore been assumed to be given by bg = bv+1,
bs = bv +3. Finally, ag = av/2 is not inconsistent with the data and has been fixed. Then
we find in the DIS scheme

set SaS 1D input :

DIS : Q0 = 0.6 GeV , Λ = 0.2 GeV

x v(x) = 1.294x0.80(1− x)0.76

x s(x) = 0.100(1− x)3.76

x g(x) = 1.273x0.40(1− x)1.76 (47)

at a χ2 of 141 for 71 F γ
2 data points. Note that we have included also the low-Q2 points

(Q2 = 0.71 GeV2) in the fit. At the input scale Q = Q0, the photon momentum is split
according to about 5 : 1 : 2 between the (two) valence quarks, the (six) sea quarks, and
the gluon.

In the MS scheme the fit favours a small sea and we find

set SaS 1M input :

MS : Q0 = 0.6 GeV , Λ = 0.2 GeV

x v(x) = 0.8477x0.51(1− x)1.37

x s(x) = 0

x g(x) = 3.42x0.255(1− x)2.37 (48)

at a χ2 of 136, where the photon momentum is now split according to about 7 : 0 : 13 at
the input scale Q = Q0. Both Q2-evolved PDFs are parametrized as

xfγ,VMD
a (x, s) = ca1 x

ca2 (1− x)c
a
3 [− lnx]c

a
4 + ca5 x

ca6 (1− x)c
a
7 a = q, val, q, sea, g , (49)

and the coefficients ci are given in tables 4 and 5, respectively. The coefficients c5–c7 are
only listed in those cases where the second term was included.

Figure 1 shows F γ
2 (x,Q2) data compared with the predictions of our sets. As explained

above, these consist of a VMD part (different for the two sets), an anomalous part for
u, d and s quarks (in common), Bethe–Heitler terms for c and b production (also in
common), and, for set 1M only, the Cγ term for u, d and s quarks. This subdivision
is illustrated in Fig. 2, for one specific Q2 scale. With the rather low value of Q0, the
anomalous contribution quickly becomes the dominant one. At higher Q2 and smaller x,
also the charm contribution is important. In the MS scheme the hadronic distributions
vanish faster with x than in the DIS scheme, both since the Cγ term is negative at large
x and since the (1− x)-power is larger.

A reasonable description is obtained for all Q2, although there might be a slight
incompatibility between the low- and high-Q2 data, which is also reflected in the not quite
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a b c d e f g κ

cval1 1.294 – – – 0.252 3.079 – –
cval2 0.80 −0.13 – – – – – –
cval3 0.76 0.667 – – – – – –
cval4 – 2.0 – – – – – –
csea1 0.1 – −0.397 1.121 – 5.61 5.26 –
csea2 – – −7.32 – – 10.3 – –
csea3 3.76 15.0 12.0 – 4.0 – – –
csea4 – – – – – – – –
cg1 – 7.90 – – 5.50 – – 5.16
cg2 – −1.9 – – 3.6 – – –
cg3 1.3 – – – – – – –
cg4 0.5 3.0 – – – – – –
cg5 1.273 – – – – – – 10.0
cg6 0.4 – – – – – – –
cg7 1.76 3.0 – – – – – –

Table 4: Coefficients of the hadronic distributions evolved from (47), parametrized in the
form (49), where ci = exp(−κs)(a+ bs + cs2 + ds3)/(1 + es+ fs2 + gs3).

a b c d e f g κ

cval1 0.8477 – – – 1.37 2.18 3.73 –
cval2 0.51 0.21 – – – – – –
cval3 1.37 – – – – – – –
cval4 – 2.667 – – – – – –
csea1 – 0.842 – – 21.3 −33.2 229. –
csea2 0.13 −2.90 – – 5.44 – – –
csea3 3.45 0.5 – – – – – –
csea4 2.8 – – – – – – –
cg1 – 24.0 – – 9.6 0.92 14.34 5.94
cg2 −0.013 −1.8 – – 3.14 – – –
cg3 2.37 0.4 – – – – – –
cg4 0.32 3.6 – – – – – –
cg5 3.42 – – – – – – 12.0
cg6 0.255 – – – – – – –
cg7 2.37 3.0 – – – – – –

Table 5: Coefficients of the hadronic distributions evolved from (48), parametrized in the
form (49), where ci = exp(−κs)(a+ bs + cs2 + ds3)/(1 + es+ fs2 + gs3).
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optimal χ2. This could indicate that higher-twist contributions are not negligible at low
Q2. One can imagine a situation in which higher-twist contributions significantly affect
F2, but where the leading-twist evolution of PDFs is still valid down to Q0 = 0.6 GeV. In
fact, including only the F γ

2 (x,Q2) data above Q2 = 4 GeV2 improves the fit to a χ2 of 60
(78) in the MS (DIS) scheme at now 55 data points. However, in both cases a very large
sea component is needed. Therefore we do not provide such a parametrization but rather
one where we also take a large Q0 = 2 GeV.

The distributions (47) vanish as x→ 1, as do truly hadronic distributions. In order to
check whether the data prefer a harder (point-like) component we added a term Nvdvx to
eq. (40) but found no improvement in χ2. We checked also the normalization of the VMD
couplings by allowing the values g2

i in table 3 to be multiplied by an overall constant K.
Interestingly enough, the data do not really require values for the VMD couplings that
deviate notably from their values used in the description of γp cross sections. The fit gives
K = 1.17 with only a slightly better χ2 (136 compared to 141). This 17% deviation of K
from unity is within the range of uncertainty of the g2

i . For example, using f 2
ρ/4π = 2.02,

as extracted from the leptonic width alone, gives a 9% increase compared to the value we
use, namely 2.20, which is the geometrical mean between this “leptonic” value and the
value extracted from γp→ ρ0p.

4.4 High-Q0 fit

Alternatively we fit input distributions starting at a “typical” deep-inelastic Q0 value,
namely Q0 = 2 GeV. Fixing again Λ4 at 200 MeV, as well as as = ag = Ci = 0, bs = 4,
bg = 2, we find in the DIS scheme K = 2.422 (corresponding to additionally allowed
vector mesons between 0.6 GeV and 2 GeV) and

set SaS 2D input :

DIS : Q0 = 2 GeV , Λ = 0.2 GeV , K = 2.422

Kx v(x) = 1.00
[
x0.46(1− x)0.64 + 0.76x

]
Kx s(x) = 0.242(1− x)4

Kx g(x) = 1.925(1− x)2 (50)

with χ2 = 59 for 55 F γ
2 data points aboveQ2 = 4 GeV2. In this case the photon momentum

is split as about 5 : 1 : 2 between valence quarks, sea quarks, and gluons, where the
“hadronic” term and the “hard” term in eq. (50) contribute each about 50% to the
valence momentum. As can be seen from Fig. 1, this fit describes the high-Q2 data better
than the fit starting at Q0 = 0.6 GeV, however, at the expense of not accommodating the
low-Q2 data.

As in the case of the low-Q2 fits, the fit in the MS scheme again favours softer distri-
bution functions and we find

set SaS 2M input :

MS : Q0 = 2 GeV , Λ = 0.2 GeV , K = 2.094

Kx v(x) = 1.168
[
x0.50(1− x)2.60 + 0.826x

]
Kx s(x) = 0.209(1− x)4

Kx g(x) = 1.808(1− x)2 (51)
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a b c d e f g κ

cval1 1.0 0.186 – – −0.209 1.495 – –
cval2 0.46 0.25 – – – – – –
cval3 0.64 0.14 5.0 – 1.0 – – –
cval4 – 1.9 – – – – – –
cval5 0.76 0.4 – – – – – –
cval6 1.0 – – – – – – –
cval7 – 2.667 – – – – – –
csea1 0.242 −0.252 1.19 – −0.607 21.95 – –
csea2 – – −12.1 – 2.62 16.7 – –
csea3 4.0 – – – – – – –
csea4 – 1.0 – – – – – –
cg1 1.925 5.55 147. – −3.59 3.32 – 18.67
cg2 – −5.81 −5.34 – 29.0 −4.26 – –
cg3 2.0 −5.9 – – 1.7 – – –
cg4 – 9.3 – – 1.7 – – –

Table 6: Coefficients of the hadronic distributions evolved from (50), parametrized in the
form (49), where ci = exp(−κs)(a+ bs + cs2 + ds3)/(1 + es+ fs2 + gs3).

with the same χ2 and a slightly larger gluon-momentum fraction (29% compared to 27%).
The comparison with data and the low-Q2 fit is given in Fig. 1.

The breakdown of the two sets component by component is again shown in Fig. 2.
Owing to the larger Q0 scale, the anomalous component is small at the lower Q2 range.
Note that the Bethe–Heitler contribution to cc production remains unchanged, since we
do not include an increased amount (or, indeed, any amount at all) of J/ψ production in
the VMD component and therefore are allowed to maintain the same mc = 1.3 GeV as
was used for the low-Q0 fits.

The distributions have again been parametrized according to eq. (49), with coefficients
given in tables 6 and 7, respectively.

The current uncertainties in the PDFs of the photon are displayed in Fig. 3, which
shows the u-quark and gluon PDFs. For the quark distribution, the high-Q2 distributions
SaS 2D and 2M are larger than the low-Q2 ones 1D and 1M, simply reflecting the corre-
sponding hierarchy in F γ

2 . At small x the opposite behaviour holds true since the small-x
rise increases with the length of the Q2 evolution. Hence the low-Q2 parametrizations
also yield larger gluon distributions at small x.

The effect of a non-zero target virtuality is displayed in Fig. 4. Increasing P 2 not only
lowers the normalization but also changes the shape of the distribution. As expected, the
gluon distribution vanishes faster than the quark distribution as P 2 → Q2.

4.5 The TPC/2γ parametrization and comparison with FKP

Experiments often use the TPC/2γ parametrization [19] of F γ
2 (x,Q2

0) determined at Q2
0 =

0.71 GeV2 to estimate the hadronic component of F γ
2 (x,Q2)

1

αem

F γ,VMD
2 (x,Q2) ≈

1

αem

F γ
2 (x,Q2

0)|TPC/2γ (52)
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a b c d e f g κ

cval1 1.168 1.771 29.35 – – – – 5.776
cval2 0.5 0.208 – – −0.794 1.516 – –
cval3 2.6 7.6 – – 5.0 – – –
cval4 – 5.15 – – 2.0 – – –
cval5 0.965 22.35 – – 18.4 – – –
cval6 1.0 – – – – – – –
cval7 – 2.667 – – – – – –
csea1 0.209 – 0.644 – 0.319 17.6 – –
csea2 −0.373 −7.71 – – 0.815 11.0 – –
csea3 4.0 1.0 – – – – – –
csea4 – 0.45 – – – – – –
cg1 1.808 29.9 – – 26.4 – – 5.28
cg2 – −5.35 −10.11 – 31.71 – – –
cg3 2.0 −7.3 4.0 – 2.5 – – –
cg4 – 10.9 – – 2.5 – – –

Table 7: Coefficients of the hadronic distributions evolved from (51), parametrized in the
form (49), where ci = exp(−κs)(a+ bs + cs2 + ds3)/(1 + es+ fs2 + gs3).

≡ (0.22± 0.01) x0.31±0.02 (1− x)0.95 + (0.06± 0.01) (1− x)2.5±1.1 .

The full F γ
2 (x,Q2) distribution is then obtained by adding the FKP parametrization [20]

of the anomalous part of F γ
2 to eq. (52). The only free parameter2 in this aproach is the

cutoff scale pT0 separating the perturbative part of F γ
2 from the non-perturbative one.

Moreover, pT0 is often varied in the figures of F γ
2 (x,Q2) or

∫ 0.8
0.3 dxF

γ
2 (x,Q2) to illustrate

the strong dependence on this arbitrary scale, implying little or no sensitivity of the data
to the QCD scale Λ. This approach to compose F γ

2 from a hadronic and a perturbative
part can be criticized on three counts:

1. The hadronic part of F γ
2 , eq. (52), is not evolved in Q2.

2. The strong correlation between the scale pT0 and the size and shape of the hadronic
part is neglected.

3. The FKP formula is a poor parametrization of the anomalous part.
Let us discuss these points in more detail.

The first point is obvious. In order to investigate how well the F γ
2 data can be described

with eq. (52), one has to consider this equation as the non-perturbative input to F γ
2 (x,Q2)

at the scale Q2
0 = 0.71 GeV2, whereafter it evolves with Q2. Note that, for the Q2

evolution, the input distributions have to be known separately for the valence, sea, and
gluon distributions. It is sensible to assume that these hadronic input distributions can be
interpreted within generalized vector-meson dominance (GVMD), in which case we can
exploit eq. (41). Associating the first term of eq. (52) with valence quarks, we need a K-
factor of K = 1.411 compared to simple VMD, eq. (39). This represents the contribution
of additional vector mesons that have to be included in eqs. (11) and (39) because of the
larger continuum cutoff Q0 = 0.84 GeV compared to the ∼ 0.6 GeV preferred for simple
VMD.

2The values of the light-quark masses are needed as well, but these are supposed to be known.

18



The only free parameters are then Λ, ag, and bg. The fit to the F γ
2 data in the DIS

scheme yields Λ = 0.116 GeV and

Kx v(x) = 0.57x0.31(1− x)0.95

Kx s(x) = 0.082(1− x)2.5

Kx g(x) = 2.586x0.31(1− x)0.95 . (53)

The photon momentum is approximately split as 3 : 1 : 6 between valence quarks, sea
quarks, and gluons at the input scale. In Fig. 5 we show the hadronic part of F γ

2 at Q2 = 4
and 100 GeV2 as well as at the input scale 0.71 GeV2. The effect of the Q2 evolution is
non-negligible: a clearly visible softening at large x and an increase at small x is observed.
The fit is, however, a rather bad representation of the data, in particular at high Q2. This
is reflected in a high χ2 value, χ2 = 181. We therefore do not provide a parametrization
for the distributions Q2-evolved from eq. (52).

Concerning the second point, we recall that, by definition, the perturbative part of
F γ

2 (x,Q2) vanishes at the Q0 (or pT0) scale separating it from the non-perturbative part
of F γ

2 . Hence, any change in this scale has to be accompanied by a corresponding change
in the size and shape of the hadronic input distributions at this scale. The correlation is
obvious: the larger the Q0, the smaller is the range of perturbative evolution, and hence
the bigger is the non-perturbative input needed. If higher-twist effects can be neglected,
the total photon momentum carried by partons should be independent of Q0. Then
eqs. (4) and (12) yield the following dependence on Q0 for the normalization K = K(Q0)
defined in eq. (36):

K(Q′0) = K(Q0) +

∑
q e

2
q

π
∑
V=ρ,ω,φ 4π/f 2

V

ln
Q′20
Q2

0

≈K(Q0) + 0.770 ln
Q′0
Q0

. (54)

Also a correlation between the separation scale and the x-shape is to be expected,
with harder hadronic input distributions required for larger Q0 scales. This could be ar-
gued on the basis of GVMD, or simply by the fact that parts of the (hard) perturbative
γ → qq splittings have to be included in the “hadronic” input distributions for larger Q0.
In any case, the separation scale is an arbitrary parameter and hence the result for F γ

2

must not depend on its value, provided it is changed within a range in which leading-twist
perturbative QCD describes the physics. As the comparison of our various parametriza-
tions demonstrates, even the variation of the scale between 0.6 GeV and 2.0 GeV has not
a major influence on the final F γ

2 result. (The differences that are there come from them
being fits to different data sets, i.e. data with Q < 2 GeV included or not. One can do
a Q0 = 0.6 GeV fit to Q > 2 GeV data only, and then obtain close agreement with a
Q0 = 2 GeV fit.)

As to point 3 above, a solution of the perturbatively calculable part of the quark
distribution functions of the photon has been obtained by FKP [20]:

fγ,anom
q (x,Q2) =

αem

2π
3 e2q

x2 + (1− x)2

xC + Cf(x)
Υ

[
1−

(
Υ0

Υ

)1+Cf(x)
]
, (55)

where

C =
8

33− 2Nf

f(x) = 2 ln
1

1− x
− x−

1

2
x2
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Υ = ln
tmax

Λ2
tmax =

Q2

x

Υ0 = ln
t0

Λ2
t0 =

m2
T0

1− x
≡
m2

q + p2
T0 + x(1− x)P 2

1− x
. (56)

Here t0 is the cutoff in the integration over the virtuality of the t-channel and u-channel
quark propagators and P 2 the target mass (virtuality of the probed photon). In Fig. 6a
we compare our anomalous u-quark distribution function at Q2 = 4 GeV2, P 2 = 0, and
Q2

0 = 0.36 GeV2 with eq. (55), where we have taken the FKP value for the quark mass
(mq = 0.3 GeV) but adjusted pT0 such that m2

T0 = Q2
0.

It might seem surprising that the two distributions do not at all agree with each
other. The difference arises mainly from the inclusion of the 1/x and 1/(1 − x) factors
in eq. (56) (1/x in tmax and Υ, 1/(1 − x) in t0 and Υ0). These terms are of kinematic
origin and specific to the quark-parton-model result (calculation of the box diagram).
However, their inclusion in the leading-twist QCD evolution equations lacks justification
in perturbative QCD: the leading-logarithmic approximation sums only the logarithms in
Q2/Λ2 and makes no statement about the summation of lnx or ln(1− x) terms (beyond,
of course, the double-leading-logarithmic approximation). In other words: although the
factorization scale is arbitrary and may well differ from its “natural” value Q2, it must
not depend on x in order not to spoil factorization.

On the other hand, it is satisfying to observe that the FKP parametrization agrees
almost perfectly with ours at large x if we take tmax = Q2 and t0 = m2

T0 in eq. (56).
Differences at small x arise because eq. (55) was derived in the valence approximation,
hence xfq given in eq. (55) vanishes as x → 0 while the full solution gives xfq rising at
small x.

Of course, one could argue that the FKP formula is not meant as a parametrization
of quark distributions but as part of an F γ

2 (x,Q2) parametrization, in combination with
VMD and direct terms. (After all, it is the FKP F γ

2 expression that is being used in
the experimental analyses.) In this context, ln x and ln(1− x) terms may well be redis-
tributed from the direct term into the “quark distribution” if this provides a convenient
approximation to the full solution. The FKP prescription for F γ

2 is

F γ,anom
2 (x,Q2) = 2

∑
q

e2q x

{
fγ,anom

q (x,Q2)

+
αem

2π
3 e2q

[
6x(1− x)− 1 +

2xm2
q − x(1− x)P

2

m2
T0

]}
. (57)

Figure 6b compares the u-quark component of eq. (57) with our parametrization of the
anomalous u-quark distribution function, to which we add the u-quark component of the
universal direct term eq. (45), i.e.

Cγ
u (x) =

αem

2π
3
(

2

3

)2

x

{[
x2 + (1− x)2

]
ln

1

x
+ 6x(1− x)− 1

}
. (58)

The observable discrepancy is, in fact, not unexpected as no ln(1−x) term is included in
eq. (58). However, a discrepancy remains even when the ln(1− x) factor is removed from
the definition of Υ0 in the FKP formula.

The reason for this is the extra m2
q/m

2
T0 term in eq. (57). Indeed, when we take mq = 0

and t0 = Q2
0 in eqs. (56) and (57), we find agreement at large x between our anomalous-

plus-direct u-quark distribution function and the FKP one, Fig. 6c. Alternatively we
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also expect agreement for the comparison of the standard FKP result, i.e. where t0 =
Q2

0/(1 − x), if we change from the expression (58) for the direct term to the standard
direct term, eq. (43):

Cγ
u (x) =

αem

2π
3
(

2

3

)2

x

{[
x2 + (1− x)2

]
ln

1− x

x
+ 8x(1− x)− 1

}
, (59)

which includes the ln(1 − x) term. This is, however, not the case. The difference can
be traced back to the difference in the coefficient of the x(1− x) term in eq. (57) and in
eq. (59). Indeed, we obtain agreement with the standard FKP result at large x if we add
to our parametrization of the u-quark distribution function the following direct term:

Cγ
u (x) =

αem

2π
3
(

2

3

)2

x

{[
x2 + (1− x)2

]
ln

1− x

x
+ 6x(1− x)− 1

}
. (60)

In conclusion, putting mq equal to zero and changing the 6x(1−x) term into 8x(1−x)
in eq. (57), the FKP parametrization describes rather well the leading-twist, leading-order
anomalous part of F2(x,Q

2) at large x in the (standard) DIS scheme. However, a number
of problems remain:
• The unmodified FKP expression (57) includes extra terms that have no correspon-

dence in perturbative QCD: they are neither leading-twist NLO terms nor higher-
twist contributions. These terms depend on an additional, unphysical parameter,
the light-quark masses.

• The FKP result is obtained in the valence approximation, and thus does not re-
produce the correct small-x behaviour of F2 (which, actually, matters already for
x < 0.5).

• A hadronic part of F γ
2 matched to the FKP parametrization is not available. The

recipe “TPC/2γ-plus-FKP” is inconsistent: since the FKP parametrization needs
a pT0 ≤ 0.5 GeV to describe the high-Q2 data, FKP is already large at Q2 =
0.71 GeV2, where the TPC parametrization alone is supposed to describe the data.

• Since the FKP parametrization in eq. (55) mixes kinematic terms between the
evolved quark distribution functions and the direct term, it is not a parametrization
of the anomalous quark distribution functions of the photon (at least not with de-
fault parameters). The quark distribution functions do not show the correct small-x
behaviour and a parametrization of the gluon density is missing.

We have attempted to provide an alternative where these problems are resolved. Our
quark and gluon distribution functions obey the leading-logarithmic evolution equations
down to very small x (∼ 10−4). The only free parameter besides Λ is the scale Q0.
Moreover, for two representative values of Q0 (0.6 and 2.0 GeV), our anomalous PDFs
are supplemented by parametrizations of the hadronic PDFs. These have been obtained
by fitting the photon structure function F γ

2 (x,Q2) to the available data.

5 Concluding remarks

In this paper we have shown how the PDFs of the photon can be decomposed into pertur-
bative and non-perturbative components. Since this separation and the constraints on the
non-perturbative part is the central result of our paper, we briefly repeat the main ideas
of our approach and show its connection with an integral representation of the photon
structure functions. Our starting point is the fact that a PDF, being the solution of an
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inhomogeneous evolution equation, can always be written as the sum of two terms: a
particular solution fγ,PT

a (x,Q2, Q2
0), which vanishes at Q2 = Q2

0, and a general solution
fγ,NP
a (x,Q2, Q2

0) of the corresponding homogeneous evolution equation, that needs an in-
put at Q2 = Q2

0. For Q0 sufficiently large, such that higher-twist (1/Q2) effects become
negligible, the anomalous distribution function defined in eq. (8) is a particular solution.
Hence we can identify fγ,PT

a (x,Q2, Q2
0) = fγ,anom

a (x,Q2, Q2
0).

To constrain fγ,NP
a (x,Q2, Q2

0) we first observe that the anomalous distribution function
of a parton a within the photon is the convolution of two factors. The first one, P γ

qq(k) =
(αem/2π)2e2qdk

2/k2 gives the probability for the photon to branch into a qq state at some
(perturbatively high) scale k. The second factor is the distribution function of the parton
a within this qq state. This “state” distribution function obeys the homogeneous evolution
equation (with the calculable input (9)).

This factorization of fγ,PT
a suggests a similar one for fγ,NP

a (x,Q2, Q2
0). Below the

scale Q0, the γ → qq transition can no longer be calculated perturbatively but may be
approximated by fluctuations of the photon into vector mesons with probabilities P γ

V (k2 =
m2
V ) = 4παem/f

2
V . Hence the analogue of the k-integral above Q0 of the continuous

spectrum of perturbative (“anomalous”) states is the discrete sum of vector mesons, with
the state distribution functions fγ,qq

a replaced by the PDFs fγ,Va of the qq “bound states”
V of the photon. As long as the shape of these distribution functions are treated as free
parameters (to be fixed from data), fγ,NP

a = fγ,VMD
a defined in eq. (11) is indeed a general

solution of the homogeneous evolution equations.
Our decomposition (34) also follows from the representation of the (moments of the)

photonic PDFs as a dispersion integral in the photon mass (P 2 is the photon virtuality)
[27]

fγa (n,Q2, P 2) =
∫ Q2

0

dk2

k2 + P 2
ρa(n,Q

2, k2) . (61)

Rather than describing the dispersion integral as the difference between a “point-like”
part (contribution from the upper limit) and a “hadronic” part (contribution from the
lower limit), it is more natural to separate short-distance and long-distance parts by a
scale Q0 since the weight function ρa possesses the scaling-violation pattern typical of
ordinary hadronic PDFs [27]. Our solution follows from the ansatz

ρa(n,Q
2, k2) =

αem

π
e2qf

γ,qq
a (n,Q2, k2)Θ(k2 −Q2

0)

+
∑
V

4παem

f 2
V

δ′
(
1−

k2

m2
V

)
fγ,Va (n,Q2, Q2

0) . (62)

The scale Q0 is arbitrary; hence the Q0 dependence of the anomalous part must be
cancelled by that of the hadronic one. For example, in the generalized vector-meson-
dominance ansatz (36) that we are using, the relation between the two parts is given by
eq. (54).

For a given, chosen Q0, the only unknown (non-perturbative) pieces of the photon
structure functions and the PDFs of the photon are the valence, sea, and gluon input
distributions and the value of K in eq. (36). In order to cover the uncertainties associated
with our approach we have presented two extreme analyses. In the first we restricted
VMD to the well-established ρ0, ω, φ states only (i.e. K = 1) and fixed Q0 = 0.6 GeV
as obtained from our γp analysis. Here the main theoretical error arises from the use of
perturbation theory down to rather low values of Q2. The spirit of the second analysis
was opposite: take Q0 well within the perturbative domain (Q0 = 2 GeV) at the expense
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of parametrizing the effects of additional vector mesons by a simple factor K to be fitted
to the data.

We have presented self-contained formulae and parametrizations that allow the PDFs
and F2 of the photon to be evaluated as a function of x and Q2, and also for non-vanishing
target virtuality P 2. A program with this information already encoded is obtainable on
request from the authors. The anomalous PDFs are parameter-free; more precisely, the
parametrization depends analytically on Q0, Λ, and P 2 (besides, of course , Q2 and x).
Similarly, the state distributions can be evaluated for arbitray x, Q2, k2, and Λ. Based
on fits to the available F γ

2 (x,Q2) data, four different sets of hadronic PDFs are provided
in order to illustrate the uncertainties in current PDF determinations. The sets differ in
the value of Q0 (0.6 and 2 GeV) and the data included (in both cases only data above Q2

0

are included in the fit), and the factorization scheme. The latter dependence is formally
of NLO accuracy, but is found to be numerically significant in LO analyses.

We have outlined the small-x behaviour of the PDFs and also discussed the description
of the hadronic event properties in photon-induced reactions. A proper treatment requires
knowledge beyond that of the usual inclusive PDF parametrizations. Moreover, we have
investigated how the photon-to-qq splitting probability enters the eikonalization of jet
cross sections. We have derived a formula that ensures that the various contributions
are not counted twice. We have shown that it is mandatory to change from the inclusive
PDFs to the state distributions.

Finally we have investigated the limitations of the approximation of F γ
2 (x,Q2) by the

“FKP-plus-TPC/2γ” expression. We found that (with correct parameter choice) the FKP
formula is a good parametrization of the anomalous part of F γ

2 (x,Q2) at large x but fails
for x < 0.5. Concerning the parametrization of the hadronic part, we demonstrated the
effects of the necessary Q2 evolution of the TPC/2γ parametrization and, most impor-
tantly, pointed out the strong correlation between the cutoff scale pT0 of the FKP formula
and the (size and shape of the) hadronic part: if pT0 is varied only in the anomalous
part, it introduces an artificial dependence on an unphysical parameter, which must not
be there.
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Figure 1: Comparison of the fits with the available [28, 29, 30, 19, 31, 32, 33, 34] F γ
2 data.

The full curve is for set SaS 1D, dashed for SaS 1M, dash-dotted SaS 2D and dotted SaS
2M. Data at nearby Q2 values are shown in the same frame, and the theoretical curves
are evaluated at some average Q2 value of that range. The small vertical bars through the
curves indicate the x value where W = 1 GeV. The behaviour to the right of this point
should be taken as indicative only, with the possibility of large higher-twist contributions.

Figure 2: Subdivision of the full F γ
2 parametrization by component, compared with data

at Q2 ≈ 5.2 GeV2. The total F γ
2 is shown by the full curve. The lowest dashed curve gives

the VMD contribution, and the next lowest the sum of VMD and anomalous ones. The
third dashed curve, which coincides with the full curve for the DIS fits, gives the sum of
VMD, anomalous and Beithe–Heitler terms. For the MS fits, the full curve additionally
contains the contribution of the Cγ term. Note that this last term is negative at large x.

Figure 3: Comparison of parametrizations of the u-quark and gluon PDFs at Q2 = 4, 40
and 400 GeV2. Full curve is for set SaS 1D, dashed for SaS 1M, dash-dotted SaS 2D
and dotted SaS 2M, as in Fig. 1. Note that a logarithmic y scale is used for the gluon
distribution. For Q2 = 400 GeV2 also the x axis is logarithmic, so as better to show
differences in the small-x behaviour.

Figure 4: Target-mass (P 2) dependence of the u-quark and gluon PDFs, forQ2 = 10 GeV2.
From top to bottom:

√
P 2 = 0, 0.2 GeV, 0.7 GeV, and 1.4 GeV. The top two frames are

for set SaS 1D, and the bottom two for set SaS 2M. The remaining two look similar
qualitatively.

Figure 5: The hadronic part of F γ
2 (x,Q2) as obtained by evolving the TPC/2γ

parametrization of F γ
2 . The full curve is the x dependence at the input scale Q2 =

0.71 GeV2, dashed curve at 4 GeV2, and dash-dotted curve at 100 GeV2.

Figure 6: Comparison between the FKP and our parametrizations of the anomalous u-
quark distribution as a function of x. The x and xu(x) values are shown in linear scale to
the left and in logarithmic scale to the right. Common values are Q2 = 4 GeV2, P 2 = 0,
nf = 3, and Λ3 = 230 MeV; additionally Q2

0 = 0.36 GeV2 in our parametrization.
a) The full curve is our parametrization, dashed curve is FKP with tmax = Q2/x and
t0 = Q2

0/(1− x), and dotted curve is FKP with tmax = Q2 and t0 = Q2
0.

b) The full curve is our parametrization plus our direct term (58), dashed curve is FKP
with their direct term (57), mq/pT0 = 0.3/0.52, tmax = Q2/x and t0 = Q2

0/(1 − x), and
dash-dotted curve is FKP as above except that t0 = Q2

0.
c) The full curve is our parametrization plus our direct term (58), large-dotted curve is our
parametrization plus the standard direct term (59), dotted curve is our parametrization
plus the modified direct term (60), dashed curve is FKP with their direct term (57),
mq/pT0 = 0./0.6, tmax = Q2/x and t0 = Q2

0/(1 − x), and dash-dotted curve is FKP as
above, except that t0 = Q2

0.
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Figure 1: Comparison of the �ts with the available [28, 29, 30, 19, 31, 32, 33, 34] F 

2
data.

The full curve is for set SaS 1D, dashed for SaS 1M, dash-dotted SaS 2D and dotted SaS

2M. Data at nearby Q
2 values are shown in the same frame, and the theoretical curves

are evaluated at some average Q2 value of that range. The small vertical bars through the

curves indicate the x value where W = 1 GeV. The behaviour to the right of this point

should be taken as indicative only, with the possibility of large higher-twist contributions.
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Figure 1: Continuation from previous page.
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Figure 2: Subdivision of the full F 

2
parametrization by component, compared with data

at Q2 � 5:2 GeV2. The total F 

2
is shown by the full curve. The lowest dashed curve gives

the VMD contribution, and the next lowest the sum of VMD and anomalous ones. The
third dashed curve, which coincides with the full curve for the DIS �ts, gives the sum of

VMD, anomalous and Beithe{Heitler terms. For the MS �ts, the full curve additionally
contains the contribution of the C
 term. Note that this last term is negative at large x.
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Figure 3: Comparison of parametrizations of the u-quark and gluon PDFs at Q2 = 4; 40

and 400 GeV2. Full curve is for set SaS 1D, dashed for SaS 1M, dash-dotted SaS 2D

and dotted SaS 2M, as in Fig. 1. Note that a logarithmic y scale is used for the gluon
distribution. For Q2 = 400 GeV2 also the x axis is logarithmic, so as better to show

di�erences in the small-x behaviour.
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Figure 4: Target-mass (P 2) dependence of the u-quark and gluon PDFs, forQ2 = 10 GeV2.

From top to bottom:
p
P 2 = 0, 0:2GeV, 0:7GeV, and 1:4GeV. The top two frames are

for set SaS 1D, and the bottom two for set SaS 2M. The remaining two look similar

qualitatively.
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Figure 5: The hadronic part of F


2
(x;Q2) as obtained by evolving the TPC/2


parametrization of F 

2
. The full curve is the x dependence at the input scale Q

2 =
0:71GeV2, dashed curve at 4GeV2, and dash-dotted curve at 100GeV2.
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Figure 6: Comparison between the FKP and our parametrizations of the anomalous u-
quark distribution as a function of x. The x and xu(x) values are shown in linear scale to
the left and in logarithmic scale to the right. Common values are Q2 = 4GeV2, P 2 = 0,

nf = 3, and �3 = 230MeV; additionally Q
2

0
= 0:36GeV2 in our parametrization.

a) The full curve is our parametrization, dashed curve is FKP with tmax = Q
2
=x and

t0 = Q
2

0
=(1 � x), and dotted curve is FKP with tmax = Q

2 and t0 = Q
2

0
.

b) The full curve is our parametrization plus our direct term (58), dashed curve is FKP
with their direct term (57), mq=pT0 = 0:3=0:52, tmax = Q

2
=x and t0 = Q

2

0
=(1 � x), and

dash-dotted curve is FKP as above except that t0 = Q
2

0
.

c) The full curve is our parametrization plus our direct term (58), large-dotted curve is our

parametrization plus the standard direct term (59), dotted curve is our parametrization

plus the modi�ed direct term (60), dashed curve is FKP with their direct term (57),
mq=pT0 = 0:=0:6, tmax = Q

2
=x and t0 = Q

2

0
=(1 � x), and dash-dotted curve is FKP as

above, except that t0 = Q
2

0
.
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