126 research outputs found

    On the Crepant Resolution Conjecture in the Local Case

    Full text link
    In this paper we analyze four examples of birational transformations between local Calabi-Yau 3-folds: two crepant resolutions, a crepant partial resolution, and a flop. We study the effect of these transformations on genus-zero Gromov-Witten invariants, proving the Coates-Corti-Iritani-Tseng/Ruan form of the Crepant Resolution Conjecture in each case. Our results suggest that this form of the Crepant Resolution Conjecture may also hold for more general crepant birational transformations. They also suggest that Ruan's original Crepant Resolution Conjecture should be modified, by including appropriate "quantum corrections", and that there is no straightforward generalization of either Ruan's original Conjecture or the Cohomological Crepant Resolution Conjecture to the case of crepant partial resolutions. Our methods are based on mirror symmetry for toric orbifolds.Comment: 27 pages. This is a substantially revised and shortened version of my preprint "Wall-Crossings in Toric Gromov-Witten Theory II: Local Examples"; all results contained here are also proved there. To appear in Communications in Mathematical Physic

    Inflation, cold dark matter, and the central density problem

    Full text link
    A problem with high central densities in dark halos has arisen in the context of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is often justified by appealing to the inflation scenario, inflationary models with mild deviations from scale-invariance are not uncommon and models with significant running of the spectral index are plausible. Even mild deviations from scale-invariance can be important because halo collapse times and densities depend on the relative amount of small-scale power. We choose several popular models of inflation and work out the ramifications for galaxy central densities. For each model, we calculate its COBE-normalized power spectrum and deduce the implied halo densities using a semi-analytic method calibrated against N-body simulations. We compare our predictions to a sample of dark matter-dominated galaxies using a non-parametric measure of the density. While standard n=1, LCDM halos are overdense by a factor of 6, several of our example inflation+CDM models predict halo densities well within the range preferred by observations. We also show how the presence of massive (0.5 eV) neutrinos may help to alleviate the central density problem even with n=1. We conclude that galaxy central densities may not be as problematic for the CDM paradigm as is sometimes assumed: rather than telling us something about the nature of the dark matter, galaxy rotation curves may be telling us something about inflation and/or neutrinos. An important test of this idea will be an eventual consensus on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our successful models have values of sigma_8 approximately 0.75, which is within the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1) are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's Comments, error in Eq. (18) corrected, references updated and corrected, conclusions unchanged. Version accepted for publication in Phys. Rev. D, scheduled for 15 August 200

    Numerical simulations of the Warm-Hot Intergalactic Medium

    Get PDF
    In this paper we review the current predictions of numerical simulations for the origin and observability of the warm hot intergalactic medium (WHIM), the diffuse gas that contains up to 50 per cent of the baryons at z~0. During structure formation, gravitational accretion shocks emerging from collapsing regions gradually heat the intergalactic medium (IGM) to temperatures in the range T~10^5-10^7 K. The WHIM is predicted to radiate most of its energy in the ultraviolet (UV) and X-ray bands and to contribute a significant fraction of the soft X-ray background emission. While O VI and C IV absorption systems arising in the cooler fraction of the WHIM with T~10^5-10^5.5 K are seen in FUSE and HST observations, models agree that current X-ray telescopes such as Chandra and XMM-Newton do not have enough sensitivity to detect the hotter WHIM. However, future missions such as Constellation-X and XEUS might be able to detect both emission lines and absorption systems from highly ionised atoms such as O VII, O VIII and Fe XVII.Comment: 18 pages, 5 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 14; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Selenium and vitamin E for prevention of non–muscle-invasive bladder cancer recurrence and progression

    Get PDF
    Importance Selenium and vitamin E have been identified as promising agents for the chemoprevention of recurrence and progression of non–muscle-invasive bladder cancer. Objective To determine whether selenium and/or vitamin E may prevent disease recurrence in patients with newly diagnosed NMIBC. Design, Setting, and Participants This multicenter, prospective, double-blinded, placebo-controlled, 2 × 2 factorial randomized clinical trial included patients with newly diagnosed NMIBC recruited from 10 secondary or tertiary care hospitals in the UK. A total of 755 patients were screened for inclusion; 484 did not meet the inclusion criteria, and 1 declined to participate. A total of 270 patients were randomly assigned to 4 groups (selenium plus placebo, vitamin E plus placebo, selenium plus vitamin E, and placebo plus placebo) in a double-blind fashion between July 17, 2007, and October 10, 2011. Eligibility included initial diagnosis of NMIBC (stages Ta, T1, or Tis); randomization within 12 months of first transurethral resection was required. Interventions Oral selenium (200 ÎŒg/d of high-selenium yeast) and matched vitamin E placebo, vitamin E (200 IU/d of d-alfa-tocopherol) and matched selenium placebo, selenium and vitamin E, or placebo and placebo. Main Outcome and Measures Recurrence-free interval (RFI) on an intention-to-treat basis (analyses completed on November 28, 2022). Results The study randomized 270 patients (mean [SD] age, 68.9 [10.4] years; median [IQR] age, 69 [63-77] years; 202 male [75%]), with 65 receiving selenium and vitamin E placebo, 71 receiving vitamin E and selenium placebo, 69 receiving selenium and vitamin E, and 65 receiving both placebos. Median overall follow-up was 5.5 years (IQR, 5.1-6.1 years); 228 patients (84%) were followed up for more than 5 years. Median treatment duration was 1.5 years (IQR, 0.9-2.5 years). The study was halted because of slow accrual. For selenium (n = 134) vs no selenium (n = 136), there was no difference in RFI (hazard ratio, 0.92; 95% CI, 0.65-1.31; P = .65). For vitamin E (n = 140) vs no vitamin E (n = 130), there was a statistically significant detriment to RFI (hazard ratio, 1.46; 95% CI, 1.02-2.09; P = .04). No significant differences were observed for progression-free interval or overall survival time with either supplement. Results were unchanged after Cox proportional hazards regression modeling to adjust for known prognostic factors. In total, 1957 adverse events were reported; 85 were serious adverse events, and all were considered unrelated to trial treatment. Conclusions and Relevance In this randomized clinical trial of selenium and vitamin E, selenium supplementation did not reduce the risk of recurrence in patients with NMIBC, but vitamin E supplementation was associated with an increased risk of recurrence. Neither selenium nor vitamin E influenced progression or overall survival. Vitamin E supplementation may be harmful to patients with NMIBC, and elucidation of the underlying biology is required

    Fundamental questions and applications of sclerochronology: Community-defined research priorities.

    Get PDF
    Horizon scanning is an increasingly common strategy to identify key research needs and frame future agendas in science. Here, we present the results of the first such exercise for the field of sclerochronology, thereby providing an overview of persistent and emergent research questions that should be addressed by future studies. Through online correspondence following the 5th International Sclerochronology Conference in 2019, participants submitted and rated questions that addressed either knowledge gaps or promising applications of sclerochronology. An initial list of 130 questions was compiled based on contributions of conference attendees and reviewed by expert panels formed during the conference. Herein, we present and discuss the 50 questions rated to be of the highest priority, determined through an online survey distributed to sclerochronology community members post the conference. The final list (1) includes important questions related to mechanisms of biological control over biomineralization, (2) highlights state of the art applications of sclerochronological methods and data for solving long-standing questions in other fields such as climate science and ecology, and (3) emphasizesthe need for common standards for data management and analysis. Although research priorities are continually reassessed, our list provides a roadmap that can be used to motivate research efforts and advance sclerochronology towardnew, and more powerful, applications.N/

    Contributions from the Philosophy of Science to the Education of Science Teachers

    Full text link

    Fundamental questions and applications of sclerochronology: Community-defined research priorities

    Get PDF
    Horizon scanning is an increasingly common strategy to identify key research needs and frame future agendas in science. Here, we present the results of the first such exercise for the field of sclerochronology, thereby providing an overview of persistent and emergent research questions that should be addressed by future studies. Through online correspondence following the 5th International Sclerochronology Conference in 2019, participants submitted and rated questions that addressed either knowledge gaps or promising applications of sclerochronology. An initial list of 130 questions was compiled based on contributions of conference attendees and reviewed by expert panels formed during the conference. Herein, we present and discuss the 50 questions rated to be of the highest priority, determined through an online survey distributed to sclerochronology community members post the conference. The final list: (1) includes important questions related to mechanisms of biological control over biomineralization; (2) highlights state of the art applications of sclerochronological methods and data for solving long-standing questions in other fields such as climate science and ecology: and (3) emphasizes the need for common standards for data management and analysis. Although research priorities are continually reassessed, our list provides a roadmap that can be used to motivate research efforts and advance sclerochronology toward new, and more powerful, applications

    Observation of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 with H.E.S.S. and MAGIC in May 2016

    Get PDF
    The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behavior, and is one of only a few FSRQs detected at very high energy (VHE, E >100 GeV) -rays. VHE -ray observations with H.E.S.S. and MAGIC during late May and early June 2016 resulted in the detection of an unprecedented flare, which reveals for the first time VHE -ray intranight variability in this source. While a common variability timescale of 1.5 hr is found, there is a significant deviation near the end of the flare with a timescale of ∌ 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, curvature is detected in the VHE -ray spectrum of PKS 1510-089, which is fully explained through absorption by the extragalactic background light. Optical R-band observations with ATOM reveal a counterpart of the -ray flare, even though the detailed flux evolution differs from the VHE lightcurve. Interestingly, a steep flux decrease is observed at the same time as the cessation of the VHE flare. In the high energy (HE, E >100 MeV) -ray band only a moderate flux increase is observed with Fermi-LAT, while the HE -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the -ray spectrum indicates that the emission region is located outside of the BLR. Radio VLBI observations reveal a fast moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ∌ 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this correlation is indeed true, VHE rays have been produced far down the jet where turbulent plasma crosses a standing shock.Accepted manuscrip
    • 

    corecore