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Abstract 40 

Horizon scanning is an increasingly common strategy to identify key research needs and frame future 41 
agendas in science. Here, we present the results of the first such exercise for the field of sclerochronology, 42 
thereby providing an overview of persistent and emergent research questions that should be addressed by 43 
future studies. Through online correspondence following the 5th International Sclerochronology 44 
Conference in 2019, participants submitted and rated questions that addressed either knowledge gaps or 45 
promising applications of sclerochronology. An initial list of 130 questions was compiled based on 46 
contributions of conference attendees and reviewed by expert panels formed during the conference. 47 
Herein, we present and discuss the 50 questions rated to be of the highest priority, determined through an 48 
online survey distributed to sclerochronology community members post the conference. The final list: (1) 49 
includes important questions related to mechanisms of biological control over biomineralization; (2) 50 
highlights state of the art applications of sclerochronological methods and data for solving long-standing 51 
questions in other fields such as climate science and ecology: and (3) emphasizes the need for common 52 
standards for data management and analysis. Although research priorities are continually reassessed, our 53 
list provides a roadmap that can be used to motivate research efforts and advance sclerochronology 54 
toward new, and more powerful, applications. 55 

 56 

1.  Introduction 57 
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Sclerochronology is a rapidly developing field of research. While growth bands in hard tissues of some 58 
organisms have long been observed and studied (e.g., Pulteney, 1781; Maton, 1805; Isely, 1914; Ma, 59 
1934; Davenport, 1938; Adams, 1940; Kohler, 1964; Clark, 1974; Jones, 1981, 1983), the term 60 
“sclerochronology” was first introduced to the published literature in the 1970s. Analogous to the long-61 
established field of dendrochronology (e.g., Fritts et al., 1971), sclerochronology was originally defined 62 
as “the study of growth patterns in calcareous exoskeletons and shells” (Buddemeier et al., 1974) and was 63 
first applied to coral research (Buddemeier et al., 1974; Hudson et al., 1976). The term has since been 64 
broadened to include various terrestrial and aquatic taxa with growth patterns, whereby the most common 65 
examples are fish (e.g., Coulson et al., 2014; Martino et al., 2019), coralline algae (e.g., Halfar et al., 66 
2011; Williams et al., 2017), gastropods (e.g., Surge et al., 2013; Prendergast and Schöne, 2017) and 67 
bivalves (e.g., Jones et al., 1989). The list of sclerochronological archives is continuously expanding as 68 
more species are being assessed for their utility in sclerochronological studies. The term was redefined 69 
during the First International Sclerochronology Conference held at St. Petersburg, FL, USA in 2007 as 70 
“…the study of physical and chemical variations in the accretionary hard tissues of organisms, and the 71 
temporal context in which they formed…” (Oschmann, 2009). 72 

Today, sclerochronology is an increasingly diverse and interdisciplinary field. Apart from utilizing a wide 73 
array of archives, sclerochronology employs a suite of morphological, geochemical, microstructural and 74 
crystallographic techniques. The data provided by sclerochronological studies have shown clear 75 
application across a range of fields, including ecology (e.g., Rhoads and Pannella, 1970; Rhoads and 76 
Lutz, 1980: Black et al., 2018), geophysics (e.g., Wells, 1963; Rosenberg & Runcorn 1975; Zachariasen 77 
et al., 2000), archaeology (e.g., Coutts 1970; Andrus, 2011; Wang et al., 2013), climate reconstruction 78 
(e.g., Jones et al., 1989; Butler et al., 2010; Tierney et al., 2015), and environmental (e.g., Steinhardt et 79 
al., 2016) and fisheries (e.g., Campana et al., 2001) sciences. Crossdated sclerochronological records, in 80 
particular, can provide powerful archives of past spatiotemporal environmental variability on local to 81 
hemispheric scales (Black et al., 2019). Advances in sclerochronological methods continually open up 82 
new applications, indicating that the full potential of sclerochronology has yet to be realized.   83 

The triennial International Sclerochronology Conference (ISC) and other regular meetings with a 84 
sclerochronology component have played an important role in the development of the field. Journal 85 
special issues associated with such meetings have provided regular overviews of the most recent results 86 
and demonstrations of the potential of sclerochronology (Schöne and Surge, 2005; Gröcke and Gillikin, 87 
2008; Oschmann, 2009; Wanamaker et al., 2011; Schöne and Gillikin, 2013; Butler and Schöne, 2017; 88 
Prendergast et al., 2017; Gillikin et al., 2019). Although significant effort has been made to review and 89 
synthesize recent findings, the sclerochronology community faces a variety of challenges and 90 
opportunities to be addressed in future work. 91 

Now, 46 years after the term “sclerochronology” first appeared in the literature, and more than a decade 92 
after the first ISC, we have reached a timely moment to evaluate existing challenges and the most 93 
promising research directions. Inspired by previous examples from other research fields (e.g., Sutherland 94 
et al., 2011; Seddon et al., 2013; Patiño et al., 2017), the coordinating authors (Trofimova, Alexandroff, 95 
Mette, and Tray) initiated this community effort at the 5th ISC held in Split, Croatia in June 2019. The 96 
aim of our project is to advance the field and support its progress by identifying key research needs and 97 
providing an overview of persistent and emergent research questions. Due to the connection to the 5th 98 
ISC, the main focus of this article is on the sclerochronology of invertebrates and fish. 99 

 100 

2.  Methodology 101 

Our project employed a horizon-scanning approach to identify community-defined priority research 102 
directions (for details see Supplementary Material 1; Fig. 1), adapted from similar studies performed in 103 
other research fields (e.g., Sutherland et al., 2011; Seddon et al., 2013; Patiño et al., 2017). At the initial 104 
stage, the coordinators (first four authors in the author list), in collaboration with expert panels and with 105 
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the input from the wider research community, collected and curated a list of questions addressing 106 
fundamental knowledge gaps (Section Foundations) and promising applications of sclerochronological 107 
methods (Section Applications). In total, 202 questions and statements were submitted. Based on these 108 
contributions, we formulated an initial list of 130 questions (see Supplementary Material 2) that met 109 
previously outlined criteria (see Supplementary Material 3; adapted from Sutherland et al., 2011). An 110 
anonymous survey was launched and distributed to the sclerochronology and paleoclimatology 111 
communities through email list-servers and social media. Participants were asked to rate each question on 112 
a 5-point Likert scale (Zero/Low/Neutral/High/Top Priority) in response to ‘Considering how 113 
fundamental the question is for sclerochronology, what should its priority be for future research?’. 114 

In total, 52 complete survey responses were submitted. The top 25 questions from each of the two 115 
categories (Foundations and Applications) were selected by calculating the percentage of total 116 
respondents rating the question as a priority (‘High priority’ or ‘Top priority’, without differentiation). 117 
The expert panels reviewed the questions that did not make the final list to retain those that addressed 118 
underexplored research directions with potential to widen the horizon of sclerochronology (presented in 119 
section 3.3). 120 

 121 
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Figure 1. Conceptual scheme illustrating the methods employed to identify fundamental questions and 122 
priority applications in sclerochronology. 123 

 124 

2.1  Limitations of this study 125 

As a horizon scanning project, the present study relies heavily on the expertise, interests, and skills of the 126 
participants. Continual efforts to exchange input and feedback from a diverse array of sclerochronological 127 
expertise were made throughout the development of the project in an attempt to maintain a wide 128 
perspective on the field and reduce bias. Even so, the fundamental questions identified by this exercise 129 
cannot be wholly separated from the research interests of the participants. While the final list of questions 130 
presents a community-informed perspective on priorities within sclerochronology, the rankings were 131 
determined by a relatively low number of participants (n=52) with potentially strong geographical, 132 
archive-based, and research-based bias (see Supplemental Material 4). Additional bias was introduced 133 
during the preparation stage, as questions were collected via input from participants in the 5th ISC. While 134 
the ISC invites participation of sclerochronologists from all fields and regions, some archives are more 135 
highly represented than others. This is particularly the case for fish otoliths and mollusk shells, as the 136 
research utilizing these archives dominated the scientific presentations at the conference. This bias was 137 
also evident in the survey, where otoliths and mollusks were the primary or secondary expertise of all 138 
participants. Similarly, the most common applications of sclerochronology presented at the ISC were 139 
related to scientific inquiries in (paleo-)ecology and climate science. In addition, the location of the 140 
conference and associated travel, as well as other expenses, are contributing factors to regional bias. Thus, 141 
the final list by no means reflects the true boundaries of the extended field covered by the term 142 
“sclerochronology”. The 130 identified questions (see Results and Supplementary Material 2) represent a 143 
wide-ranging, but far from exhaustive, overview of possible future research directions and priorities. As 144 
this project was initiated to stimulate discussion among researchers, encourage collaboration, and spur 145 
new ideas for scientific advances, the results presented here, despite the inevitable biases, reflect a unique 146 
community-based insight. 147 

 148 

3.   Results 149 

Below, we present 50 priority questions identified by this study. The questions are divided into two 150 
categories that identify (1) fundamental knowledge gaps (Foundations of Sclerochronology, 25 questions) 151 
and (2) promising applications (Sclerochronology application, 25 questions). In this section, we also 152 
discuss the general motivation and background behind the questions. Due to the high diversity of archives 153 
and proxies, techniques, and research topics within sclerochronology, we aimed to provide a general 154 
overview, fully acknowledging that there will be exceptions to the rule. The literature cited in our paper 155 
deliberately represents a mixture of seminal papers, highlights in the field, and unique applications 156 
spanning a range of research groups and archives. These references are meant to point the reader to useful 157 
or interesting examples, and by no means represent a comprehensive review of the state-of-the-art on a 158 
particular question. We have grouped the 50 questions into topics to avoid repetition in the discussion and 159 
provide an outline of the general themes evident in the collection. In addition, eight questions not 160 
included in the list of the leading 50 questions, but highlighted by the expert panels as cutting-edge ideas, 161 
are presented in the final section of the results.  162 

 163 

3.1 Foundations of Sclerochronology 164 

This section presents the highest ranked questions addressing knowledge gaps in our understanding of 165 
sclerochronological archives. It covers a range of topics, including but not limited to physiology, 166 
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biomineralization, interpretation of sclerochronological data, development of standards, and establishment 167 
and calibration of new proxies.  168 

 169 

3.1.1 Biomineralization 170 

1. How, and to what extent, do vital effects influence biomineral stable isotope composition, 171 
elemental distribution, and elemental concentration?  172 

2. What controls the incorporation of trace and minor elements into biogenic carbonates and how do 173 
these processes affect distribution of different trace elements between crystal lattice and organic 174 
phases?  175 

3. Are there differences in biomineralization processes across ontogeny and between species and/or 176 
populations that affect skeletal isotopic composition and elemental concentrations?  177 

4. How might climate and environmental change (e.g., ocean acidification) be altering processes of 178 
biomineralization?  179 

A sound understanding of biological mineralization is fundamental to sclerochronology and the 180 
establishment of geochemical proxies in various contexts. Yet, the exact mechanisms driving 181 
biomineralization are not fully characterized, which is reflected in the questions in this topic [Q1-4]. The 182 
hallmark of biomineralization, as opposed to its abiogenic counterpart, is the remarkable control that 183 
organisms can exert over mineral formation (Weiner and Dove, 2003). These so-called “vital effects” 184 
(Urey et al., 1951), including kinetic and taxonomic effects (Weiner and Dove, 2003), can obscure the 185 
environmental signal in geochemical proxies, and thus confound proxy interpretation. An understanding 186 
of the role of vital effects in biomineralization is a major challenge for sclerochronology, as highlighted 187 
by Questions 1-3.  188 

Whereas the relationships of some geochemical properties and environmental variables are well 189 
established for sclerochronological archives (e.g., stable oxygen isotope value of biogenic carbonate 190 
(δ18Oc); see Topic “Temperature reconstructions”), other properties are often difficult to interpret due to 191 
taxon-specific physiological effects. For example, previous studies have demonstrated that Mg-to-Ca 192 
ratios in coralline algae (e.g., Nürnberg et al., 1996; Kamenos et al., 2008), and Sr-to-Ca ratios in tropical 193 
shallow-water corals and sclerosponges (e.g., Beck et al., 1992; Rosenheim et al., 2004) are robust 194 
temperature recorders, but are currently still difficult to interpret in otoliths (e.g., Campana, 1999) and 195 
bivalves, specifically those with aragonitic shells (e.g., Zhao et al., 2017a; Gillikin et al., 2019). Stable 196 
carbon isotope values (δ13C) of coralline algae (Williams et al., 2011), corals (Swart et al., 2010; Dassié et 197 
al., 2013), and sclerosponges (Druffel and Benavides, 1986; Böhm et al., 1996) have been successfully 198 
used for environmental reconstructions, e.g., as a proxy for the δ13C value of dissolved inorganic carbon 199 
in ambient water. However, vital effects on the δ

13C signature are suspected among corals, fish otoliths, 200 
and some mollusks (Kalish, 1991; Iacumin et al., 1992; McConnaughey et al., 1997; Lorrain et al., 2004; 201 
McConnaughey and Gillikin, 2008). Further characterization of the mechanisms controlling the isotope 202 
and element chemical variability in biominerals will improve the usability of proxies across various 203 
taxonomic groups and therefore is crucial for future sclerochronological studies [Q1]. 204 

While biomineralization processes differ among taxonomic groups, they can also vary through an 205 
individual’s lifetime, even within skeletal structural layers, and between individuals. Apart from 206 
environmental factors, the chemical composition, as well as microstructure, of biominerals is affected by 207 
genetics (Carter, 1980; Clarke et al., 2010; Norrie et al., 2019) and can vary throughout ontogeny 208 
(Marshall and McCulloch, 2002; Elliot et al., 2003; Gillikin et al., 2007; Nishida et al., 2011; Grammer et 209 
al., 2017; Reynolds et al., 2019). The role of these factors in biomineralization is not well understood in 210 
the broad context of archives and proxies, representing a significant knowledge gap for sclerochronology 211 
[Q3]. In the case of element proxies, additional complexity may result from the presence of non-lattice 212 
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bound trace elements (e.g., Takesue et al., 2008). Mechanisms of elemental incorporation into biogenic 213 
carbonates, therefore, require a special focus in future research to improve application of trace element 214 
records in sclerochronology [Q2]. 215 

Development of biophysical models coupling metabolism, biomineral growth, and elemental and isotopic 216 
dynamics could provide much needed mechanistic insights into vital effects in terms of their effects on 217 
environmental proxies, and the use of elemental and isotopic compositions of biominerals as 218 
physiological tracers. This will require experimental and theoretical modelling work, but frameworks 219 
such as Dynamic Energy Budget theory provide a platform suitable for model development (e.g., Fablet et 220 
al., 2011; Spalding et al., 2017) [Q1-3]. 221 

Modern climate change and associated ocean acidification can pose major threats to marine calcifying 222 
organisms due to their potential effects on biomineralization. Changes in biomineralization can have 223 
consequences for the survival of species, as well as the applicability of proxies, and therefore require 224 
further research [Q4]. In the context of sclerochronological research, it is particularly important to 225 
understand natural variations in biomineralization across different physical and biotic stressors (e.g., 226 
Telesca et al., 2019; De Noia et al., 2020), and physiological responses and adaptations leading to 227 
changes in biomineralization rate, mineralogy and geochemistry of skeletal structures. Although the 228 
effects of ocean acidification on biomineralization are increasingly studied (e.g., Checkley et al., 2009; 229 
Ivanina et al., 2013; Fitzer et al., 2014; Milano et al., 2016; Cornwall et al., 2018; Cross et al., 2019), the 230 
results suggest variable responses among taxa (e.g., Zhao et al., 2018, 2020), likely depending on the 231 
degree of biological control over biomineralization and variable compensatory mechanisms and their 232 
energetic costs (Kleypas et al., 2005; Spalding et al., 2017; Melzner et al., 2020, and references therein). 233 
More research is needed to fully understand potential outcomes and identify possible patterns. 234 
Furthermore, growing concerns about the overall effects of acidification on marine ecosystems call for 235 
reliable proxies for past ocean acidification events. Boron isotopes (δ11B) and U/Ca have recently shown 236 
potential as proxies for pH levels (Hönisch et al., 2012; Raddatz et al., 2014; Foster and Rae, 2016; 237 
Jurikova et al., 2019). However, more research is needed to evaluate the broad applicability of these 238 
proxies across sclerochronological archives, which is intimately linked to the understanding of 239 
biomineralization processes under changing environments.  240 

 241 

3.1.2 Drivers of skeletal growth 242 

5. What are the specific processes by which climate signals are translated into growth of calcified 243 
structures?  244 

6. What determines the timing of the growth season and does it vary throughout ontogeny?  245 

7. Are the growth/chemical responses to specific environmental drivers consistent/stationary over 246 
geologic time?  247 

8. How can we predict the sclerochronological patterns (growth and/or chemical records) expected 248 
under differing combinations of movement, physiology, and environmental change? 249 

Measurement of growth patterns and structures within skeletal archives is a standard procedure for 250 
sclerochronological work. Whereas the growth record serves as an age model to anchor geochemical or 251 
other proxies, individual or population-averaged growth variability is itself often a valuable 252 
environmental or ecological proxy (e.g., Halfar et al., 2011). For population-averaged records, the process 253 
of crossdating to produce absolutely dated growth increment width chronologies hinges on the 254 
assumption that common environmental drivers impart a shared growth response within a population 255 
(Black et al., 2019). However, questions remain regarding the mechanistic pathways leading to growth 256 
responses from environmental and biological drivers [Q5]. Combinations of food availability and quality, 257 
temperature, and light intensity are commonly identified as primary environmental drivers of year-to-year 258 
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increment width variability that differ among sclerochronological archives (for a brief overview, see 259 
Schöne and Surge, 2005).  260 

Structural properties of biominerals provide other promising proxies reflecting interactions between 261 
biology and environment (e.g., Füllenbach et al., 2014; Milano et al., 2017; Höche et al., 2020). The 262 
process by which environmental signals are translated into microstructure variability also informs 263 
mechanisms of biomineralization, and is increasingly being studied (e.g., Nishida et al., 2015; Checa, 264 
2018). More detailed insight into the archive-specific drivers behind increment width and microstructural 265 
variability will enable robust linkages between growth proxy records and environmental variability. It will 266 
also contribute to a better understanding of the synchrony or lack of synchrony among individuals in a 267 
population (Marali and Schöne, 2015; Muslic et al., 2013; Rountrey et al., 2014). Finally, the question 268 
whether drivers of growth are constant and stationary over geologic time should be considered [Q7]. 269 
Proxy records collected from sub-fossil material for which a precise calendar date cannot be attached 270 
(“floating” records) offer windows into past time intervals (e.g., Kilbourne et al., 2004; Scourse et al., 271 
2006). However, the discussion of potentially variable growth drivers in past time intervals or across the 272 
lifetime of an individual, and the resulting impact on proxy reconstructions, has received little attention.  273 

A common approach to the determination of the timing of the growing season for sclerochronological 274 
archives is analysis of seasonal oxygen isotope (δ

18Oc) profiles within annual increments (Weidman et al., 275 
1994; Schöne and Surge, 2005; Mannino et al., 2008; Judd et al., 2018) or trace elemental ratios (e.g., 276 
corals, DeLong et al., 2011; coralline algae; Williams et al., 2014). Because many sclerochronological 277 
archives exhibit decreasing growth rate as they age (e.g., bivalve shells, fish otoliths), accurate 278 
determination of the full range of the growing season is best accomplished by sampling the wider, 279 
juvenile increments (Goodwin et al., 2003). Extrapolating these findings throughout the life of the animal, 280 
however, is problematic if there are ontogenetic effects on the duration and or timing of the growing 281 
season. Such effects are not consistent among species (Goodwin et al., 2003; Schöne et al., 2005), 282 
warranting further investigation [Q6]. 283 

The translation of climate and environmental signals into growth and geochemical signatures is further 284 
complicated in the case of mobile organisms. The environment experienced by an animal may vary across 285 
large-scale migrations as well as differing habitat utilization across its life history (e.g., Gillanders et al., 286 
2015; Roberts et al., 2019). Disentangling interpretations of environmental change from interpretations of 287 
animal movement is a difficult task. Modeling provides a powerful tool to predict the effects of differing 288 
combinations of life history patterns, environmental change, and potentially adaptive drivers of growth, as 289 
discussed above [Q8]. Whereas research in this area has advanced in recent years (e.g., van der Sleen et 290 
al., 2018; Hobbs et al., 2019; Trueman et al., 2019), it is still recognized as a priority research question in 291 
the field. 292 

 293 

3.1.3 Data standards 294 

9. What common data standards should be adopted to improve our ability to compare 295 
sclerochronological datasets with each other and with other datasets?  296 

10. What level of sample replication is required for geochemical records for sound estimation of 297 
uncertainty associated with inter-individual variability and ensuring comparability between 298 
records?  299 

Variability in sclerochronological methods and reporting standards can affect the quality and 300 
comparability of datasets, representing a major challenge for the field [Q9, Q10]. Whereas the tree-ring 301 
community has agreed-upon methods and reporting standards for data sharing (e.g., International Tree-302 
Ring Data Bank (ITRDB)), similar agreements are missing in the sclerochronological community. The 303 
issues with data reporting and sharing became apparent during the various PAGES2k projects that 304 
brought together publicly shared paleo data from a variety of archives to build global databases (e.g., 305 
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PAGES2k Consortium, 2013; Tierney et al., 2015; Emile-Geay, et al., 2017; Konecky et al., 2020). 306 
Recently, global efforts have been made to improve scientific data interoperability and reusability 307 
(Wilkinson et al., 2016; McKay and Emile-Geay, 2016). Initiatives to provide growth, geochemical, 308 
microstructural, or other proxy data in common formats have also begun within the sclerochronology 309 
community (Dassié et al., 2017; Khider et al., 2019; Tray et al., 2020). Collaboration among 310 
sclerochronology researchers to standardize data collection methods and data reporting, as well as 311 
standards for archiving physical samples, are needed to address these issues. Some studies comparing 312 
multiple, inter-species sclerochronology datasets with varying temporal resolutions provide examples of 313 
progress in this area (Matta et al., 2010; Ong et al., 2016; Peharda et al., 2018), however, further 314 
extensions of such work is a priority for future research.  315 

At present, various statistical methods are used to account for inter-individual variability within 316 
sclerochronological datasets, one of the most commonly used being mixed-effects models (Weisberg et 317 
al., 2010; Morrongiello and Thresher, 2015). Additionally, power analyses can be used to estimate 318 
appropriate sample sizes (Toft and Shea, 1983). Whereas these are acceptable methods for studies that 319 
address individual-level variation, there is less certainty about their applicability to geochemical data 320 
[Q10] (e.g., stable isotope and trace element records; but see Grammer et al 2017 and Macdonald et al 321 
2019). Correlation coefficients paired with significance levels (i.e., p-values) are typically used to 322 
determine robustness of environmental reconstructions (e.g., Montagna et al., 2014 for seawater 323 
temperature). Still, there are arguments against using these metrics, due to the short length of marine 324 
instrumental records available for calibration (Crowley et al., 1999, Corrège 2006; Finney et al., 2010) 325 
and problems with statistical inference (Wasserstein et al., 2019). In addition to correlation, coral 326 
replication studies have used expressed population signal (EPS), absolute differences, and root mean 327 
squared statistical tests to assess replication and reproducibility at the intra- and inter-coral colony levels 328 
and between species at the same location (DeLong et al., 2007; 2011; Wu et al., 2014; Dassié et al., 329 
2014). Chronological uncertainty, especially in non-crossdated reconstructions, needs to be better 330 
understood and assessed in the various sclerochronological archives (e.g., Comboul et al., 2014). There is, 331 
therefore, a need to define and clarify the types of data and analyses that constitute a sclerochronological 332 
reconstruction, and to further develop and standardize statistical techniques to quantify and account for 333 
uncertainty. 334 

 335 

3.1.4 Data analysis and interpretation 336 

11. What methods can we use to better assess the leads, lags, and synchronicities in 337 
sclerochronological records across large spatial regions?  338 

12. How can we disentangle the separate and combined effects of multiple causal factors in 339 
sclerochronological records?  340 

13. How can common environmental signals be identified in multiple records which have different 341 
spatial and temporal scales and resolutions?  342 

14. How can we disentangle multiscale spatial and temporal variability within sclerochronological 343 
records?  344 

15. To what extent do variations in multiannual to multicentennial growth patterns represent a 345 
community/ecosystem response to changing environmental conditions?  346 

Interpretation of environmental signals in sclerochronological records is not a trivial task, and this is 347 
reflected in the questions in this topic [Q11-15]. Linked with the issue of standardizing data sharing (see 348 
Topic 3.1.3), these questions highlight methods and strategies for sclerochronological data analysis that 349 
require further development and standards for sharing data that have been agreed upon by the community.  350 
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Sclerochronological archives provide high-resolution (e.g., daily, annual) environmental proxy data, 351 
which, provided that live-collected samples are used, are absolutely dated. This makes them uniquely 352 
suited for studies of spatiotemporal heterogeneity in the response of different components of the Earth 353 
system to forcing factors (e.g., Evans, 1972; Ohno 1989; Black et al., 2014; Reynolds et al., 2016; Black 354 
et al., 2019). Therefore, the development of methods and strategies for the determination of leads and lags 355 
across different spatial scales is an important avenue for future research [Q11]. Methods used by tree-ring 356 
(e.g., Cook et al., 2004) and PAGES2k communities (e.g., Tierney et al., 2015; Atsawawaranunt et al., 357 
2018; Konecky et al., 2020) in their compilation studies could be assessed and applied to 358 
sclerochronological reconstructions. 359 

An understanding of the extent to which individual or population-averaged growth records represent a 360 
community or ecosystem response to a changing environment is crucial for interpretation of climate 361 
signals [Q12]. Sclerochronological records (e.g., growth records and geochemical data) often encapsulate 362 
a response to a suite of environmental factors which, importantly, can act on different biological and 363 
temporal scales (e.g., Morrongiello et al., 2019). Disentangling these influences is of major importance 364 
for interpreting environmental signals [Q13] at different resolutions and scales [Q14] within one record, 365 
and for identifying common signals across multiple records [Q15]. To deconvolve this complexity, past 366 
studies have employed multiple linear regression (e.g., Mette et al., 2016), principal component analysis 367 
(e.g., Black et al., 2014), univariate and multivariate mixed-effects models (e.g., Morrongiello et al., 368 
2015; Macdonald et al., 2019), dynamic energy budget models (e.g., Pecquerie et al., 2012), and Bayesian 369 
hierarchical modelling (e.g., Helser et al., 2012). Further assessment of these tools and the adoption of 370 
new statistical techniques for time series analysis of sclerochronological records will undoubtedly 371 
improve the interpretation and impact of sclerochronological studies. 372 

 373 

3.1.5 Temperature reconstructions 374 

16. How can we improve estimates of past water isotopic composition to increase accuracy of 375 
temperature reconstructions?  376 

17. Why do we often observe an offset between seawater temperature reconstructed from oxygen 377 
isotope values (using widely applied paleotemperature equations) and those measured in situ?  378 

18. How can we determine if species-specific paleotemperature equations are a valid and necessary 379 
approach to increase the accuracy of paleotemperature reconstructions?  380 

19. What are the limitations of using clumped-isotope paleothermometry to constrain isotopic 381 
paleotemperature estimates from fossil organisms?  382 

Oxygen isotope values of biocarbonates (δ
18Oc) have long been used to reconstruct temperatures (Urey et al., 383 

1947; Epstein et al., 1953). Sclerochronological archives allow the construction of highly resolved δ
18O 384 

records, which have important applications in many research fields, such as climatology, physiology, 385 
anthropology, paleoceanography, and ecology, among others. The applicability of δ18Oc as a temperature proxy 386 
has been established for all sclerochronological archives, including scleractinian corals (e.g., Weber and 387 
Woodhead, 1972), fish otoliths (e.g., Devereux, 1967), mollusks (e.g., Weidman et al., 1994), and coralline 388 
algae (e.g., Halfar et al., 2008), among others. The premise for using δ18Oc to study temperature is that the 389 
fractionation of oxygen isotopes during biomineralization is temperature-dependent and in (near) equilibrium 390 
with the ambient water (Grossman and Ku, 1986; Kelemen et al., 2017; Thorrold et al., 1997; Weidman et al., 391 
1994; but see Smith et al., 2000). The accuracy and reliability of this method depend on knowledge of (1) the 392 
δ

18O value of the ambient water (δ18Ow) and other site-specific physical and chemical properties [Q16-18], and 393 
(2) the specific biomineralization processes within the chosen archive [Q17, 18]. 394 

Question 16 raises a well-known and pertinent issue in δ18O paleothermometry and its application in 395 
sclerochronological studies (Prendergast and Stevens, 2014; Yan et al., 2014). Given that δ

18Oc is a function of 396 
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δ
18Ow and temperature-driven fractionation, independent estimates or measurements of δ

18Ow are crucial. In 397 
studies of modern samples, δ

18Ow is often estimated using a region-specific relationship between salinity and 398 
δ

18O (i.e., mixing lines) (LeGrande and Schmidt, 2006). However, the accuracy of mixing lines in local studies 399 
needs to be scrutinized, especially at locations where freshwater input causes high δ

18Ow variability (e.g., 400 
Wagner et al., 2011). One approach to overcome the issue of unknown δ18Ow is to use paired proxies to 401 
constrain temperature with the element-to-element ratio and solve for δ18Ow. Examples for such paired proxies 402 
in aragonitic sclerochronological archives are Sr/Ca and δ18O in corals and sclerosponges (e.g., McCulloch et 403 
al., 1994, Gagan et al., 1998; Ren et al., 2002; Rosenheim et al., 2004), δ13C and δ18O in bivalve shells (e.g., 404 
Reynolds et al., 2019), and δ18Ow in otoliths paired with δ18O in bivalve shells (Wang et al., 2011), among 405 
others. Carroll et al. (2006) suggested another approach, using hydrogen isotope values (δD) within the organic 406 
matrix of freshwater bivalves to independently estimate δ18Ow. Carbonate clumped isotope values (Δ47; Δ48) 407 
provide an avenue to circumvent this question altogether, as this method does not require an estimate for δ18Ow 408 
(Eiler, 2007; Fiebig et al., 2019). This is especially useful in studies where δ18Ow uncertainty is high, for 409 
example in estuarine environments or deep-time marine settings (e.g., Martin and Letolle, 1979; de Winter et 410 
al., 2018), or where kinetic effects are present. However, as Question 19 shows, limitations of the Δ47 value as 411 
a paleothermometer have yet to be fully assessed. One drawback is the requirement for relatively large sample 412 
sizes; conventional carbonate clumped isotope techniques require 3-7 mg of carbonate sample, while recent 413 
techniques have been able to lower the number to 14-20 replicates of 100 µg (Meckler et al., 2014; Müller et 414 
al., 2017). This size requirement limits high-resolution temperature reconstruction, and most archives will have 415 
specific limitations due to the overall size of the calcified structure. Additionally, yet-to-be assessed taxon-416 
specific vital effects may be a limiting factor (Eiler, 2011). Other limitations of clumped isotope 417 
paleothermometry are its time-consuming and demanding analytical methods and its sensitivity to diagenetic 418 
overprint (Leutert et al., 2019). 419 

Offsets between the δ18O-derived temperatures and measured in-situ temperatures have been reported for 420 
different archives and locations (e.g., Weber 1970; McConnaughey 1989; Bonitz et al., 2017; Dunbar and 421 
Wefer, 1984; Kelemen et al., 2017). In response to this issue, species-specific or site-specific calibrations are 422 
often formulated [Q17, 18]. However, performing new and specific calibrations might lead to false 423 
conclusions, e.g., a steeper slope between δ

18O and temperature can mask the real temperature amplitude 424 
(Waite and Swart, 2015). It is therefore crucial to understand what causes the observed offsets and eliminate 425 
inaccurate δ18Ow assumptions [Q16] or sampling methods as potential sources of error. Suspected sources of 426 
unexpected offsets or observed variability in δ

18Oc include (1) isotopic alteration caused by mechanical 427 
sampling or analytical methods (Tobin et al., 2011; Waite and Swart, 2015; but see Foster et al., 2009), (2) 428 
signal aliasing as a result of limited sampling resolution (Goodwin et al., 2003; DeLong et al., 2007; Gagan et 429 
al., 2012), (3) sampling imprecision considering layers of different architectural structures, which can influence 430 
δ

18Oc (Leder et al., 1996; DeLong et al., 2016; Mette et al., 2018; Trofimova et al., 2018), and (4) cleaning 431 
methods altering primary mineralogy and δ

18O signal (Boiseau et al., 1997; Wierzbowski, 2007; Holcomb et 432 
al., 2015, Grottoli et al., 2005), and vital effects (McConnaughey, 1989). One way to more accurately quantify 433 
δ

18O-temperature relationships is through experiments in controlled or closely monitored settings (e.g., 434 
Wanamaker et al., 2007; Ford et al., 2010; Nishida et al., 2014, 2015; Sakamoto et al., 2017). It is crucial to 435 
improve our understanding of oxygen isotope dynamics in organisms and the biominerals they synthesize in 436 
the effort to explain offsets between reconstructed and in-situ temperatures, while sampling methods and local 437 
context also have to be taken into account. 438 

 439 

3.1.6 Archive-specific research 440 

20. What not-yet-identified long-term sclerochronological archives exist, especially outside of the 441 
North Atlantic region?  442 

21. What environmental parameters can be reconstructed from trace element concentrations and 443 
ratios within mollusk shells, and why are some trace element proxies unreliable?  444 
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22. Through which pathways are trace and minor elements transported into mollusk’s extrapallial 445 
fluid, and from where are they sourced (e.g., digested food, directly from water)?  446 

23. Why is it that sometimes within the same population of bivalves, not all of the individual growth 447 
patterns from live-collected specimens crossmatch and how should we deal with such inter-448 
individual variability?  449 

24. What drives the formation of annual growth increments in fish otoliths? 450 

25. How does inter-individual variation in growth patterns in fish affect long-term growth time 451 
series?  452 

Newly identified archives or proxies are often sought to address geographic, environmental, and/or 453 
temporal gaps in earth system research (e.g., Peharda et al., 2016; Milano et al., 2017). Established, long-454 
lived (>100 years), sclerochronological archives have limited geographic ranges, resulting in a high 455 
density of research focused in certain regions. This is particularly true in the North Atlantic Ocean, where 456 
studies using mollusk shell archives, especially Arctica islandica, dominate the literature (Steinhardt et 457 
al., 2016). The western tropical Atlantic and Pacific are hotspots for research using reef-building coral 458 
archives, representing another geographic bias in the availability of long-term proxy archives (Corrège, 459 
2006). Some long-lived species are becoming well-established sclerochronological archives applicable in 460 
other regions (e.g., Tridacna sp., Jones et al., 1986; Elliot et al., 2009; Killam et al., 2020; geoducks, 461 
Strom et al., 2004; Black et al., 2009; coralline algae, Williams et al., 2017; deep sea corals, Robinson et 462 
al., 2014). However, to better address past climate and environmental research questions outside of the 463 
tropics and the North Atlantic, in particular, the search for long-lived archives from other regions is a 464 
priority [Q20]. 465 

Mollusk shells and fish otoliths are among the most frequently used sclerochronological archives. Several 466 
mollusk- and fish-specific issues were highlighted in the community survey. In particular, trace element 467 
concentrations, a reliable geochemical proxy among many archives, have been shown to be problematic 468 
or inconsistent within and across most mollusk species (see Topic “Biomineralization”). Little is known 469 
about the uptake of elements from the ambient water to the site of biomineralization, the transport 470 
mechanisms and pathways of elements within the body, nor the specific incorporation mechanisms of 471 
elements in the skeletal hard parts (Suzuki et al., 2009; Zhao et al., 2017b). Solving these questions will 472 
likely require heavy involvement from cell biologists and geneticists to improve our understanding of 473 
elemental proxies among molluscan species [Q21-22].  474 

Synchronous growth is remarkably prevalent among mollusks (Jones et al., 1989; Weidman et al., 1994; 475 
Black et al., 2019), meaning it is unusual to encounter an individual that does not match the population 476 
growth pattern. When such individuals are identified, it is important to assess the quality of the material 477 
and clarity of the increment boundaries, and the geographic extent over which the samples were collected, 478 
as well as the experience of the worker with the particular population, to establish whether the shell truly 479 
exhibits a unique growth pattern. However, the reasons why some shells have unclear or irregular growth 480 
and do not easily crossmatch with the local population growth pattern are poorly understood [Q23] and 481 
could be biologically based. The extent to which difficult-to-crossdate individuals within a population is a 482 
problem has not been addressed within the literature, revealing an opportunity to improve understanding 483 
of molluscan growth records, and other crossdatable archives, as environmental proxies. While some 484 
research utilizes the varying strength of the common signal as an environmental record in itself (Marali 485 
and Schöne, 2015), more work is needed to assess the scope and implications of individual growth 486 
variability. 487 

Fish otolith growth increments form with an annual periodicity in almost all fish species, even if the 488 
species lives in a relatively constant environment, such as the deep sea (Cailliet et al., 2001; Campana, 489 
2005). Photoperiod, temperature, growth, sexual maturation, feeding, migration and other processes have 490 
all been linked to annual increment formation (Campana and Thorrold, 2001; Grønkjær, 2016), but the 491 
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ubiquity of these increments suggests that there is an innate physiological mechanism involved (e.g., 492 
circadian periodicity). Many analytical approaches to otolith sclerochronology average out individual-493 
level variation in growth and focus on the mean population trends. As fish otolith sclerochronologies 494 
continue to develop, it is critical to understand the mechanisms driving otolith growth increment 495 
formation [Q24]. Furthermore, between short- and long-lived species, attempts to crossdate individuals 496 
within a population produce varying results in terms of synchrony and environmental relationships 497 
(Rountrey et al., 2014). Understanding the occurrence and drivers behind individual growth variability 498 
[Q25] is a priority for advancing research using long-term growth series from otoliths (Morrongiello and 499 
Thresher, 2015; Morrongiello et al., 2019). For example, understanding temporal growth variability 500 
within otolith time series could aid fisheries management by improving stock discrimination methods 501 
(Denechaud et al., 2020) and assessing the impact of harvest on populations (Morrongiello et al., 2019).  502 

 503 

3.2 Application of Sclerochronology 504 

This section presents the highest-ranked questions addressing potential applications of established 505 
sclerochronological archives and techniques to outstanding questions in a wide range of research fields, 506 
including enhanced applications for climatological, oceanographic, ecological, and cultural studies.   507 

3.2.1 Global climate 508 

26. How spatially heterogeneous were climate and environmental conditions under “normal” past 509 
conditions (i.e., as opposed to extreme climate scenarios, such as the Little Ice Age, Last Glacial 510 
Maximum, Younger Dryas)?  511 

27. How did seasonality vary in the past in the temperate climate zone?  512 

28. Can we detect changes in variability in sclerochronological records that indicate an approach to a 513 
climate or environmental tipping point?  514 

29. How did major climate changes affect the intrinsic variability of El Nino/Southern Oscillation 515 
(ENSO) in the past?  516 

30. To what extent do sclerochronologies covary with tree-ring data, and what does that tell us about 517 
the coherence of climate variability over hemispheric scales through time?  518 

31. How can we integrate tropical growth-increment data with mid- and upper-latitude 519 
sclerochronologies to explore tropical-extratropical teleconnections?  520 

32. Which sclerochronological data are most suited for climate model assimilation?  521 

Previous work has demonstrated successful applications of sclerochronological records to questions of 522 
global climate through paleoclimate reconstruction (Eakin and Grottoli, 2006; Reynolds et al., 2018). The 523 
annual and often subannual resolution of sclerochronological records, especially when supported by a 524 
crossdated chronology, makes them uniquely suitable to address questions of seasonality, rapid climate 525 
change, tipping points, and lead-lag climate responses across the Earth system (Corrège, 2006; Butler and 526 
Schöne, 2017; Reynolds et al., 2016). Several key directions for sclerochronological climate research on 527 
these topics were identified as a priority for future research [Q26-29]. 528 

The rapidly expanding range of species, geographic, and temporal coverage represented in published 529 
sclerochronological records enables new avenues for research on long-term, high-resolution climate 530 
variability. It is now possible to address questions of climate variability across broad spatial areas to 531 
explore large-scale climate and teleconnections (e.g., northern and southern hemisphere water mass 532 
temperatures, Thresher et al., 2014; circumtropical SST, Tierney et al., 2015; Wanamaker et al., 2019) 533 
across diverse time periods (e.g., late Holocene, Black et al., 2014; middle Eocene, Bougeois et al., 2014; 534 
Paleogene, Huyghe et al., 2015; late Cretaceous, de Winter et al., 2017). Because the geographic ranges 535 
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of sclerochronological archives differ, large-scale climate reconstructions often require compilation of 536 
records sourced from different species (e.g., Reynolds et al., 2018). The comparability of such records 537 
must be assessed, and limitations explored in order to apply both multispecies sclerochronology and 538 
multiproxy-based interpretations to questions of, for example, atmospheric and oceanic interactions [Q30] 539 
and tropical-extratropical teleconnections [Q31]. 540 

Additionally, much attention has been placed on how climate modeling interfaces with sclerochronology 541 
[Q32]. Many studies utilize data from climate models to inform proxy interpretations (e.g., Tindall et al., 542 
2017; Trueman et al., 2019). However, with the exception of coral records (see Okazaki and Yoshimura, 543 
2017), the use of sclerochronological records in large-scale proxy data assimilations, has rarely been 544 
accomplished despite its high potential value (Goosse, 2016; Pyrina et al., 2017). More work is needed to 545 
assess the quality and richness of detail provided by sclerochronological records that will enable their 546 
appropriate inclusion in paleoclimate reanalyses (see Schmidt et al., 2014). Efforts to maximize sampling 547 
resolution, improve measurement techniques, and provide a robust understanding of the mechanisms by 548 
which environmental signals are embedded within the archive will improve confidence in these modeling 549 
applications (Goosse, 2016; Butler and Schöne, 2017).  550 

 551 

3.2.2 Paleoceanography 552 

33. How can sclerochronological proxies be used to study historical changes in the extent of Arctic 553 
sea ice?  554 

34. How can we use sclerochronological archives to monitor changes in the role of the oceans as a 555 
buffer for carbon emissions and heat? 556 

35. How can we use sclerochronological archives to detect high resolution variability in strength of 557 
Atlantic Meridional Overturning Circulation (AMOC)?  558 

36. How has the 14C reservoir effect varied over time and at different temporal scales (e.g., 559 
subannual, annual, decadal)?  560 

37. What can sclerochronological records tell us about the links between the marine carbon and 561 
nitrogen cycles in the past, especially during times of abrupt climate change? 562 

38. How can we utilise both high resolution sclerochronological records and traditional 563 
paleoceanographic data (e.g., sediment core records) to produce spatial reconstructions of broad 564 
scale climate variability?  565 

39. How can sclerochronological records from shelf seas be used as proxies for open-ocean 566 
conditions and what are the temporal and spatial limitations? 567 

Questions specific to paleoceanography highlight motivations and research avenues similar to those 568 
presented in the topic “Global Climate” (section 3.2.1). The wide range of established marine 569 
sclerochronological archives and proxies enables deeper understanding of past and present oceanographic 570 
processes at high temporal resolution. The questions in this topic [Q33-39] demonstrate some of the most 571 
prominent and promising applications of sclerochronological data for solving long-standing questions in 572 
paleoceanography.   573 

Sclerochronological data have been successfully used to study past sea ice variability in the Arctic [Q33] 574 
(e.g., Halfar et al., 2013; Chan et al., 2017; Hetzinger et al., 2019), track local oceanic uptake of 575 
anthropogenic CO2 [Q34] (e.g., Schöne et al., 2011; Williams et al., 2011; Dassié et al., 2013), estimate 576 
oceanic heat content and temperature variability [Q34] (Linsley et al., 2015), and assess changes in past 577 
oceanic circulation [Q35] (e.g., Wanamaker et al., 2012). The ability to combine radiocarbon (14C) dating 578 
and independent sclerochronological age models (e.g., growth chronologies) has been used to reconstruct 579 
local 14C reservoir changes through time [Q36] (e.g., Druffel and Griffin, 1993; Sherwood et al., 2008; 580 
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Butler et al., 2009; Wanamaker et al., 2012; Hirabayashi et al., 2017). Furthermore, promising results 581 
have been obtained in studies on nitrogen isotope (δ

15N) values in sclerochronological archives (e.g., 582 
Yamazaki et al., 2016; Sherwood et al., 2014; Gillikin et al., 2019, and references therein). There is great 583 
potential for stable nitrogen and carbon isotope records to be coupled to enable detailed investigation of 584 
marine food web links in the past, as well as other aspects of the marine nitrogen and carbon cycles 585 
[Q37].  586 

To fully address important questions on ocean history and broad-scale climate variability [e.g., Q33-37], 587 
spatiotemporal expansion of proxy data coverage is needed. Use of paleoceanographic data based on 588 
sediment cores in conjunction with diverse sclerochronological archives represents a promising avenue 589 
for future research [Q38]. While some work has been done in this area (e.g., Reynolds, et al., 2013), 590 
literature on methods and limitations for such work is sparse. Related to this issue, the temporal and 591 
spatial limitations of sclerochronological reconstructions of open-ocean conditionsbased on archives from 592 
shelf seas (e.g., bivalves and tropical corals) should be further investigated [Q39]. 593 

 594 

3.2.3 Paleoecology and human-environmental interactions 595 

40. How can sclerochronological tools help us to decide which time period/condition provides an 596 
appropriate baseline for studies which require “natural”, “pristine” or pre-human impact data on 597 
the environment? 598 

41. How can sclerochronology be used to assess the anthropogenic impacts on overall ecosystem 599 
process and structure throughout the Holocene? 600 

42. How can we use sclerochronological data to detect the first signs of human impact on the marine 601 
system through fishing and climate change?  602 

43. How can sclerochronological records be used to assess changes in fish and shellfish populations 603 
due to harvesting?  604 

44. In the context of global climate change, which aquatic ecosystems/environments experience 605 
ecological change first or to the greatest degree (e.g., open ocean, upwelling, subtidal, intertidal, 606 
estuarine, riverine, lacustrine)?  607 

45. How can we use sclerochronology to distinguish variations in the effects of climate change on 608 
marine ecosystems at various spatial scales (e.g., local, regional and global)? 609 

46. How can we use sclerochronological archives to monitor the lag in the ecosystem response to 610 
climate change and other environmental change in the oceans?  611 

47. How can we use sclerochronology to quantify the rate of recovery of marine ecological systems 612 
from natural or anthropogenic disturbances? 613 

48. How are different classes of chemical pollutants presented in the sclerochronological record and 614 
can their temporal distribution be inferred?  615 

49. How can sclerochronological records be used to study eutrophication dynamics in coastal 616 
ecosystems? 617 

50. How can sclerochronological records be used to infer the frequency and intensity of hypoxia and 618 
anoxia events in the past? 619 

It is abundantly clear that most, if not all, modern ecosystems are severely affected by human activities 620 
(IPCC, 2018). Quantifying and understanding the impact of human activities on these ecosystems in the 621 
past [Q40-43] is among the key challenges in paleoecology (Seddon et al., 2013). Climate change, 622 
pollution, and industrial fishing have been identified as major threats to aquatic biodiversity and 623 
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ecosystem health. It is therefore important to monitor environmental change in order to inform the 624 
definition of goals and directives for environmental protection, health assessment, and restoration [Q44-625 
50]. However, due to shifting baselines and scarce data, restoration targets are often based on images of 626 
ecosystems that have already been disturbed and are thus no longer pristine [Q40]. Sclerochronology 627 
provides powerful tools to extend and analyze such baselines by constructing highly resolved 628 
chronologies that span centuries or millennia. 629 

Sclerochronological archives are often used to study the human impact on marine species and ecosystems 630 
in the past and present [Q41-43]. Fishing and shellfish harvesting, in particular, have been important 631 
sources of food for humans since prehistoric times. Shell middens (i.e., anthropogenic sites of shellfish 632 
remains) are a particularly useful resource for studies of early human-environmental interactions, as they 633 
can be found on coastlines worldwide (except for Antarctica) and have been deposited throughout the 634 
Holocene and beyond (see Erlandson, 2001). Material obtained from shell middens has been used to study 635 
season of capture, resource management, measures of overharvesting, and environmental changes (see 636 
Andrews et al., 2003; Andrus, 2011; Geffen et al., 2011; Carré et al., 2019; Butler et al., 2019). Accurate 637 
age-structured information and growth rates of commercial species are of great importance in fisheries 638 
science and have been gathered extensively from fish otoliths, and also from mollusk shells or statoliths 639 
(Campana and Thorrold 2001; Henry and Nixon, 2008; Ezgeta-Balic et al., 2011; Hollyman et al., 2018). 640 
Otolith chemistry is also used to study the thermal life history of populations, or as a geochemical tracer 641 
to determine past locations and stock identity (e.g., Campana, 1999 and references therein; Wang et al., 642 
2016). Moreover, additional information on food-web dynamics can be gained from δ

15N composition in 643 
carbonate-bound organic material (e.g., Gillikin et al., 2017; Sirot et al., 2017). Sclerochronology thus 644 
offers valuable insight into the impact of human activity and climate change on commercial species as 645 
well as the wider ecosystem. Further advances in this field to inform stakeholders and management are 646 
thus a priority research area. 647 

Carbon dioxide emissions and climate change affect marine environments in complex ways through 648 
changes in temperature, mixing regimes, circulation patterns, oxygen solubility, and carbon chemistry. 649 
Responses of marine ecosystems are manifold, interlinked, and spatially and temporally heterogeneous 650 
[Q44-47]. While single-population chronologies provide limited insight into an ecosystem, a more 651 
holistic view can be achieved by comparing sclerochronological data from archives at different trophic 652 
levels or from different regions (e.g., Black, 2009; Reynolds et al., 2017). This approach enables us to 653 
study leads and lags in response to climate change or environmental disturbances between different 654 
ecosystems, regions, or taxa. Another method used to study or predict ecosystem response to climate 655 
change is the use of sclerochronological data to parameterize forecasting models (e.g., Morrongiello et al., 656 
2012; Barrow et al., 2018). These and other methods (e.g., dynamic energy budget models) for 657 
investigating characteristics of ecosystem response to environmental change should be further explored. 658 

The impacts of environmental pollution on aquatic ecosystems and mixing regimes is a matter of rising 659 
concern [Q48-50]. Some studies have applied sclerochronological techniques to monitor heavy metal 660 
pollution retrospectively  (e.g., Scott, 1990; Gillikin et al., 2005; Krause-Nehring et al., 2012; Holland et 661 
al., 2014), which confirms that sclerochronology can provide long-term and highly resolved records that 662 
are not obtainable by standard monitoring techniques. While elemental content alteration through 663 
diagenesis or biological control is a potential limitation of these methods, the applicability and advantages 664 
of sclerochronology in the field of biomonitoring are evident (Schöne and Krause, 2016; Steinhardt et al., 665 
2016). Another form of pollution is the anthropological input of nutrients into freshwater and coastal 666 
ecosystems, e.g., through agricultural runoff or wastewater, which fuels eutrophication [Q49, 50]. 667 
Sclerochronological studies on deep-water corals have shown that enrichment in skeletal 15N is an 668 
indicator for terrestrial runoff (e.g., Williams et al., 2007; Prouty et al., 2014). Similarly, bivalve shell 669 
δ

15N is increasingly used to assess human and animal waste input into waterways (e.g., Black et al., 2017; 670 
Thibault et al., 2020). While this has been predominantly done via whole-shell analysis, time series δ

15N 671 
data have been published in other contexts (Gillikin et al., 2017), and the potential for sclerochronological 672 
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studies is evident. Cultural eutrophication is relevant to many issues within public health and ecology, 673 
such as the concern for safe drinking water and the increasing development of hypoxic areas in oceans 674 
and lakes known as ‘dead zones’ (Chislock et al., 2013; Breitburg et al., 2018). Previous studies highlight 675 
promising applications of sclerochronological methods in this area, for example, shifts in Mn/Ca of cod 676 
otoliths have been used as a proxy for exposure to hypoxia in the Baltic Sea (Limburg et al., 2011; 2015; 677 
Limburg and Casini, 2018). Given that they are (mostly) immobile and benthic bioaccumulators with 678 
worldwide distribution, bivalves might be particularly suitable to track the history of hypoxic and anoxic 679 
events (e.g., Zhao et al., 2017c; Murakami-Sugihara et al., 2019). As dead zones are rapidly increasing 680 
worldwide, it would be very beneficial to develop sclerochronological applications to assess and monitor 681 
these phenomena. 682 

 683 

3.3 Cutting Edge Sclerochronology  684 

This section presents questions that were not ranked in the leading 50, but were nevertheless 685 
highlighted by the expert panels as potentially groundbreaking. These questions may have been 686 
downgraded because they are very specific to particular archives, or because they were perceived as high-687 
risk with little chance of success. After discussion, they have been resurrected by the expert panels 688 
because they were thought to have the potential to broaden the horizons of sclerochronology, leading to 689 
highly novel applications.  690 

 691 

A. Can we use material within the growth line to infer conditions outside the main growing season?  692 

This question alludes to archives with varying growth rates, in particular, bivalves from mid- and high-693 
latitude locations. Growth lines are formed during times of slow growth, often during autumn and winter 694 
months (see Killam and Clapham, 2018). Thus, growth lines potentially contain information on the 695 
environment outside of the main growing season. Attempts to use growth lines to study environmental 696 
and climate changes are absent within the literature, most likely due to the analytical challenges that arise 697 
from the fine scale of growth lines (Shirai et al., 2014). However, some research has demonstrated 698 
potential for shell Sr/Ca and Mg/Ca proxies to reveal environmental information near the growth line 699 
(e.g., Schöne et al., 2013), despite general challenges in elemental ratio proxies within bivalve shells (see 700 
Section I, Topic “Archive-specific research”). Thus, analytical techniques making use of growth lines in 701 
bivalves is a promising avenue for studying previously inaccessible seasons, as well as improving our 702 
understanding of biomineralization processes. 703 

 704 

B. What approaches can we use to identify coeval shells for deep-time geological settings that will 705 
enable us to construct multicentennial crossmatched chronologies?  706 

Crossdating allows construction of well replicated, annually resolved, and exactly dated records that can 707 
span multiple centuries to millennia (Black et al., 2016). Also, software tools such as Shellcorr (Scourse 708 
et al., 2006) or CDendro (Cybis Dendrochronology) can assist in pattern matching among dead-collected 709 
specimens which are known to be roughly coeval. However, construction of deep-time chronologies by 710 
crossmatching shells requires the identification of fossil specimens with overlapping lifespans from 711 
accumulations and lags which may cover many thousands of years. The antiquity of these shells precludes 712 
rangefinder radiometric dating, and other methods need to be developed to identify coeval specimens in 713 
cases such as this. While stratigraphy or spatial proximity among specimens can provide time constraints 714 
in certain cases, these factors alone are not sufficient to guarantee contemporaneity — modern shell lags, 715 
for example, can contain specimens separated in time by several thousand years (Butler et al., 2010). The 716 
likelihood of contemporaneity might increase when fossils can be interpreted to have been rapidly buried 717 
in life position (e.g., bivalves with both valves still intact; Lockwood and Work, 2006) or in a calcified 718 
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reef formation (Greer et al., 2006; Wu et al., 2017). A taphonomic indicator of rapid burial is good 719 
preservation of the surface structure with no signs of grazing, boring, or postmortem microboring (Vogel, 720 
2000; Lescinsky et al., 2011, and references therein). However, even where rapid burial in life position is 721 
assumed, time-averaging effects may complicate the search for coeval specimens; this is especially true 722 
for shelly fossils in siliciclastic environments, and to a lesser degree also for shells in carbonate sediments 723 
as well as for reef coral assemblages (Kidwell et al., 2005; Edinger et al., 2007). Developing sampling 724 
strategies in the fossil record could represent a breakthrough that enables us to investigate change at high 725 
resolution over extended periods in deep-time settings. 726 

 727 

C. What can sclerochronological records tell us about which seasons are represented by non-728 
sclerochronological estimates of paleo-seawater temperature - e.g., from sediment core proxies?  729 

Temperature estimates based on sediment core proxies (i.e., marine microorganisms and their organic 730 
residues) are an important source of paleoceanographic data. Yet, interpretation of the climate signal is 731 
often complicated by the uncertainties related to the life cycle of biological sediment core archives (i.e., 732 
planktonic and benthic microorganisms). Ecological factors, such as the length and timing of the growing 733 
season, determine whether paleo-seawater temperature estimates represent an annual mean or an average 734 
over a certain season (typically summer). Sediment traps and core-top analysis in combination with 735 
instrumental data are typically used to calibrate proxy-based reconstructions. However, this approach 736 
cannot account for changes in the growing season through time and is not applicable to extinct species. 737 
The advantage of sclerochronology for providing seasonally resolved paleotemperature records opens a 738 
possibility for comparison with contemporary non-sclerochronological estimates (e.g., de Winter et al., 739 
2018), thus providing the means for proxy calibration. The feasibility of this approach depends on our 740 
understanding of how sclerochronological records can be used to reconstruct past open-ocean conditions 741 
[Q39] typically reflected in sediment core records. To enable calibration of proxies based on planktonic 742 
species, sclerochronological records that reflect mixed-layer temperature dynamics have to be developed. 743 
Identification of suitable sclerochronological archives and development of new methods to solve these 744 
issues can lead to a novel application of sclerochronology and improve our understanding of past climate.  745 

 746 

D. How can we use sclerochronology to investigate potential latitudinal gradients in the response of 747 
marine biota to climate change, in terms of species die-off or range shifts?  748 

An understanding of how biotas respond to climate change, to possibly predict future extinctions and 749 
species range shifts, are among the key challenges of ecology (Sutherland et al., 2013). Most of the 750 
research on this topic focuses on abundance and species distribution data, which is a coarse metric of 751 
change (Rombouts et al., 2012). For the impact to be detectable in such data, organisms have to die, stop 752 
breeding, or shift their geographic distribution. Sclerochronology provides promising tools for analyzing 753 
population metrics from both stationary (e.g., bivalves and corals) and/or mobile (e.g., fish) organisms to 754 
infer latitudinal shifts in optimal conditions and/or fisheries regime shifts in population demography 755 
(Neuheimer et al., 2011; Morrongiello and Thresher, 2015). Using sclerochronology to identify sublethal 756 
impacts of changing environmental conditions can help to recognize potential range shifts or fisheries 757 
productivity changes before distributional change has happened.  758 

 759 

E. Can fisheries management advice be improved by combining traditional stock assessment 760 
techniques (e.g., otolith aging) with machine learning?  761 

Advances in software and analytical tools have had profound impacts in the environmental sciences 762 
(Fielding, 1999). One such advancement is in the field of ‘machine learning’, which is a transformative 763 
tool across disciplines (Malde et al., 2019). Image recognition is a common application of machine 764 
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learning within the natural sciences. Machine learning methods have been utilized for mollusk shell 765 
identification (Zhang et al., 2019) and geometric morphometric analysis of gastropods (Doyle et al., 766 
2018).  Furthermore, fisheries scientists have applied machine learning techniques to fish age assessment 767 
through otolith image analysis with some success (Dub et al., 2013; Moen et al., 2018). Combining 768 
machine learning with long-term historical datasets of sclerochronology images, from any species, and 769 
their associated growth and ages, could 1) automate aging, 2) reduce human error, 3) improve predictions 770 
of population growth responses, and 4) identify anomalies. Large-scale incorporation of open-source 771 
otolith image recognition software could improve stock management advice for commercially important 772 
species. 773 

 774 

F. What proportion of the whole ecosystem extent does the environmental DNA (eDNA) in bivalve 775 
shells capture and how can the eDNA be used to reconstruct ecosystem change?  776 

Technological advances in molecular ecology have led to the utilization of environmental DNA (eDNA) 777 
to detect the presence of certain taxa within aquatic environments. From a physical environmental sample 778 
(e.g., water, soil, shell), molecular markers within fragments of available eDNA are amplified and 779 
compared against a database to identify the presence of target species within the environment (Ardura et 780 
al., 2015). This tool is particularly useful for ecosystem monitoring. For example, eDNA can allow for 781 
early detection of invasive species, and the identification of vulnerable species. Sclerochronology and 782 
genetics are not traditionally paired together, but recently, the carbonate biominerals of fossilized marine 783 
mollusks have been found to contain eDNA (Der Sarkissian et al., 2017). More studies are needed to 784 
verify how successful bivalve eDNA is at reconstructing the full range of species present within the entire 785 
ecosystem, and how eDNA results may vary depending on environmental and physiological conditions. 786 
The ability to identify the timing of presence and absence of taxa within sclerochronological archives 787 
could revolutionize our understanding of ecosystem shifts during changes in global climate.  788 

 789 

G. How can possible effects of early human harvesting be separated from natural variability in 790 
marine fauna to better assess how changes in resources affected hunter-fisher-gatherers?  791 

Material from middens can be used to reconstruct past climatic and environmental change as well as 792 
human behavior (see also Q40-43). Fish and shellfish have been an important source of food throughout 793 
human history. The impact of fishing, harvesting, and maricultures on marine ecosystems can be traced 794 
back to the early Holocene and beyond - for instance, in Europe, records of shellfish harvesting date back 795 
to over 450,000 years ago (Bailey and Milner, 2008). However, natural variability also influences 796 
ecosystem change, and not all environmental changes that we see in the paleo record are anthropogenic. 797 
Thus, anthropogenic influences such as overharvesting or ancient maricultural constructions have to be 798 
separated from natural variability of ecosystems and populations. For example, regional differences in 799 
shellfish harvesting practices and underlying environmental and historical factors can be investigated by 800 
combining growth and δ18O data in shells collected from archaeological shell middens in different 801 
environmental settings (Burchell et al., 2013b). Disentangling natural and anthropogenic signals recorded 802 
in middens using sclerochronological tools , would allow us to study not only how humans have impacted 803 
the environment, but in turn how environmental change has affected human societies and food security 804 
through time. 805 

 806 

H. How can data from sclerochronology be used to inform us about land claims by indigenous 807 
people?  808 

Indigenous land rights are tightly linked with physical and economic safety, as well as mental and 809 
emotional well-being, and therefore of fundamental importance for the self-determination of indigenous 810 
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groups. As discussed above, many studies have used midden material to study past human-environmental 811 
interactions. Season-of-capture studies provide insight into residential mobility and sedentism of hunter-812 
fisher-gatherers in the past (e.g., Burchell et al., 2013a). In the Americas and Australia, as well as some 813 
regions in Asia and Africa, midden archives are almost always on indigenous land. Therefore, scientists 814 
should acknowledge that these archives are the result of indigenous labor, and seek conversation and 815 
exchange with indigenous groups. Given that middens can provide continuous records that span the last 816 
11,000 years of human history (Toniello et al., 2019), sclerochronological techniques could be applied to 817 
prove long-term land use of indigenous groups based on ancient middens. Further applications and 818 
research questions should be developed by actively involving indigenous descent groups in the scientific 819 
process (see, e.g., Kaiser et al., 2019). 820 

 821 

4. Discussion  822 

4.1. Priority research questions 823 

This collaborative project was conducted to identify the state-of-the-art in sclerochronology and to reflect 824 
on existing challenges and possible future developments. The questions identified herein as fundamental 825 
and priority to the field (see Supplementary Materials for the complete list) represent a snapshot in time 826 
describing the potential and challenges of sclerochronological research as perceived by a group of leading 827 
experts and community members following the 5th ISC. The link to the 5th ISC was an advantage for this 828 
endeavor, as the conference provided an overview of contemporary research results, facilitating the 829 
compilation of well-informed contributions.  830 

We intended to highlight research addressing promising applications of sclerochronology, as well as gaps 831 
in our understanding of archives and methods used in the field. The questions presented and discussed in 832 
this paper reveal significant knowledge gaps in our understanding of biomineralization processes [Q1-4, 833 
22], mechanisms driving the growth of skeletal structures [Q5-8, 23, 25], and challenges in geochemical 834 
proxy interpretations [Q16-19, 21]. They also emphasize the need to identify common standards for data 835 
management and analysis [Q9-15] and introduce fundamental questions related to the use of specific 836 
archives, such as fish otoliths [Q24, 25, C, F] and bivalves [Q21-23, B, G]. Even though many of the 837 
submitted questions suggest that current tools and methods require further development, many existing 838 
techniques are sufficient to address important scientific questions in other fields. Our results highlight the 839 
potential for applying sclerochronological data and methods to answer long-standing questions in other 840 
research fields, such as climate sciences [Q26-39] and (paleo-)ecology [Q40-50].  841 

Identification of research priorities entails certain trade-offs. The feasibility of approaches and their 842 
potential impacts are often difficult to foresee and evaluate. This complicates identification of the 843 
research directions that are not-yet established and thus truly lie on the horizon. Although our list of 844 
questions provides an overview of possibilities and challenges in sclerochronology, considering all the 845 
limitations of this study, it should be treated with some degree of caution. The questions selected by the 846 
community are largely reflective of ongoing research. As the 5th ISC conference showed, 847 
sclerochronological tools have been used in many research fields. Nevertheless, the most common 848 
applications to date are related to climate and environmental sciences, which is reflected in both the 849 
research presented at the ISC and the questions submitted to the survey that forms the basis of this paper. 850 
However, these are not the limits of sclerochronology, and applications to social and anthropological 851 
sciences, for example, are feasible and promising [e.g., Questions G, H]. Thus, the range of questions 852 
presented here by no means portrays the full diversity and potential of the field and the list of questions 853 
will require further updates as the field develops. 854 

 855 

4.2 Future outlook 856 
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The discussion arising from this project emphasizes important issues relevant to the future of the field. 857 
While previous advances in sample preparation, observation and analysis have moved the field 858 
significantly forward and enabled new and improved applications of sclerochronological research, our 859 
results show there is still room for technical and methodological development in the field (Section 3.1), as 860 
support and motivation for applications in the field (Section 3.2). The survey participants identified 861 
common standards for data management and analysis as high priority. Similarly, identification of 862 
common terminology within and across different branches of sclerochronological research would 863 
significantly improve communication and potential collaboration. A further promising avenue for 864 
sclerochronology is future collaboration with researchers utilizing similar archives (e.g., calcium 865 
phosphates biominerals), or researchers in the social sciences. Relatively low response rates and the bias 866 
towards certain disciplines and archives in the framework of the ISC indicate that the field requires 867 
consolidation and more collaborative work. Collaboration across different disciplines would undoubtedly 868 
widen the profile of sclerochronology among the scientific community. As the field matures, it should 869 
become possible to combine climatological, ecological, biogeochemical and archaeological applications 870 
of sclerochronology to create an integrated sclerochronological approach to the study of the Earth system, 871 
covering the physical and living systems and extending to human cultural history. 872 

 873 

5.  Conclusions 874 

This is the first effort to identify priority and fundamental research questions in sclerochronology via 875 
horizon scanning. As the field grows and advances, we recognize that research priorities will have to be 876 
re-assessed. The list of questions presented and discussed in this paper contains the highest-ranked 877 
research priorities and fundamental questions, as identified in a community-based survey. While this list 878 
should not be considered definitive, we hope that the results of this project will stimulate discussion and 879 
serve as a stepping stone to future collaborations and groundbreaking research.  880 
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