1,166 research outputs found
Stratospheric ozone measurement with an infrared heterodyne spectrometer
A stratospheric ozone absorption line in the 10 microns band was measured and resolved completely, using an infrared heterodyne spectrometer with spectral resolution of 5 MHz (0.000167 cm to -1 power). The vertical concentration profile of stratospheric ozone was obtained through an analytical inversion of the measured spectral line profile. The absolute total column density was 0.34 cm atm with a peak mixing ratio occurring at approximately 24 km. The (7,1,6) to (7,1,7) O3 line center frequency was found to be 1043.1775 + or - 0.00033 cm to toe -1 power, or 430 + or - 10 MHz higher than the P(24) CO2 laser line frequency
Models of the SL9 Impacts II. Radiative-hydrodynamic Modeling of the Plume Splashback
We model the plume "splashback" phase of the SL9 collisions with Jupiter
using the ZEUS-3D hydrodynamic code. We modified the Zeus code to include gray
radiative transport, and we present validation tests. We couple the infalling
mass and momentum fluxes of SL9 plume material (from paper I) to a jovian
atmospheric model. A strong and complex shock structure results. The modeled
shock temperatures agree well with observations, and the structure and
evolution of the modeled shocks account for the appearance of high excitation
molecular line emission after the peak of the continuum light curve. The
splashback region cools by radial expansion as well as by radiation. The
morphology of our synthetic continuum light curves agree with observations over
a broad wavelength range (0.9 to 12 microns). A feature of our ballistic plume
is a shell of mass at the highest velocities, which we term the "vanguard".
Portions of the vanguard ejected on shallow trajectories produce a lateral
shock front, whose initial expansion accounts for the "third precursors" seen
in the 2-micron light curves of the larger impacts, and for hot methane
emission at early times. Continued propagation of this lateral shock
approximately reproduces the radii, propagation speed, and centroid positions
of the large rings observed at 3-4 microns by McGregor et al. The portion of
the vanguard ejected closer to the vertical falls back with high z-component
velocities just after maximum light, producing CO emission and the "flare" seen
at 0.9 microns. The model also produces secondary maxima ("bounces") whose
amplitudes and periods are in agreement with observations.Comment: 13 pages, 9 figures (figs 3 and 4 in color), accepted for Ap.J.
latex, version including full figures at:
http://oobleck.tn.cornell.edu/jh/ast/papers/slplume2-20.ps.g
Antisocial behaviour and teacherâstudent relationship quality: The role of emotionârelated abilities and callousâunemotional traits
Background: Childhood antisocial behaviour has been associated with poorer teacher-student relationship (TSR) quality. It is also well-established that youth with antisocial behaviour have a range of emotion-related deficits, yet the impact of these studentsâ emotion-related abilities on the TSR is not understood. Furthermore, the addition of the Limited Prosocial Emotions specifier in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) indicates that understanding the role of callous-unemotional (CU) traits for youth with antisocial behaviour problems is of particular importance.
Aims: The aim of this study was to investigate the association between antisocial behaviour difficulties and the TSR by examining the influence of emotion-related abilities and CU traits.
Sample: Twelve teachers from 10 primary schools provided anonymised information on 108 children aged 6-11 years.
Results: Antisocial behaviour was associated with higher teacher-student conflict (but not closeness) as well as higher emotion lability/negativity and lower emotion understanding/empathy. Emotion lability/negativity was associated with higher teacher-student conflict (but not closeness), and emotion understanding/empathy was associated with lower teacher-student conflict and higher closeness. CU traits was associated with higher teacher-student conflict and lower teacher-student closeness (controlling for antisocial behaviour more broadly). We found no evidence of a moderating effect of CU traits or emotion-related abilities on the association between antisocial behaviour and TSR quality.
Conclusions: Interventions for behaviour difficulties should consider teacher-student relationships in the classroom. Strategies which aim to improve teacher-student closeness as well as reduce teacher-student conflict may be of particular value to students with high CU traits
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+Ï+Ï- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bcâ(2S31)+ state reconstructed without the low-energy photon from the Bcâ(1S31)+âBc+Îł decay following Bcâ(2S31)+âBcâ(1S31)+Ï+Ï-. A second state is seen with a global (local) statistical significance of 2.2Ï (3.2Ï) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
Proteomic Analysis of S-Acylated Proteins in Human B Cells Reveals Palmitoylation of the Immune Regulators CD20 and CD23
S-palmitoylation is a reversible post-translational modification important for controlling the membrane targeting and function of numerous membrane proteins with diverse roles in signalling, scaffolding, and trafficking. We sought to identify novel palmitoylated proteins in B lymphocytes using acyl-biotin exchange chemistry, coupled with differential analysis by liquid-chromatography tandem mass spectrometry. In total, we identified 57 novel palmitoylated protein candidates from human EBV-transformed lymphoid cells. Two of them, namely CD20 and CD23 (low affinity immunoglobulin epsilon Fc receptor), are immune regulators that are effective/potential therapeutic targets for haematological malignancies, autoimmune diseases and allergic disorders. Palmitoylation of CD20 and CD23 was confirmed by heterologous expression of alanine mutants coupled with bioorthogonal metabolic labeling. This study demonstrates a new subset of palmitoylated proteins in B cells, illustrating the ubiquitous role of protein palmitoylation in immune regulation
Scientific Rationale of Saturn's In Situ Exploration
Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustratedby the exploration of Jupiter, where key measurements such as the determination of the noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scienti-c goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussedthroughout this paper : rst, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopiccomposition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk OH ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to mostextrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Dierent mission architectures are envisaged, which would benet from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bars of atmospheric pressure. We rally discuss the science payload required on a Saturn probe to match the measurement requirements
Amplitude analysis of the Îb0âpKâÎł decay
The resonant structure of the radiative decay Îb0âpKâÎł in the region of proton-kaon invariant-mass up to 2.5 GeV/c2 is studied using proton-proton collision data recorded at centre-of-mass energies of 7, 8, and 13 TeV collected with the LHCb detector, corresponding to a total integrated luminosity of 9 fbâ1. Results are given in terms of fit and interference fractions between the different components contributing to this final state. Only Î resonances decaying to pKâ are found to be relevant, where the largest contributions stem from the Î(1520), Î(1600), Î(1800), and Î(1890) states
Studies of and production in and Pb collisions
The production of and mesons is studied in proton-proton and
proton-lead collisions collected with the LHCb detector. Proton-proton
collisions are studied at center-of-mass energies of and ,
and proton-lead collisions are studied at a center-of-mass energy per nucleon
of . The studies are performed in center-of-mass rapidity
regions (forward rapidity) and
(backward rapidity) defined relative to the proton beam direction. The
and production cross sections are measured differentially as a function
of transverse momentum for and , respectively. The differential cross sections are used to
calculate nuclear modification factors. The nuclear modification factors for
and mesons agree at both forward and backward rapidity, showing
no significant evidence of mass dependence. The differential cross sections of
mesons are also used to calculate cross section ratios,
which show evidence of a deviation from the world average. These studies offer
new constraints on mass-dependent nuclear effects in heavy-ion collisions, as
well as and meson fragmentation.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2023-030.html (LHCb
public pages
Enhanced production of baryons in high-multiplicity collisions at TeV
The production rate of baryons relative to mesons
in collisions at a center-of-mass energy TeV is measured
by the LHCb experiment. The ratio of to production
cross-sections shows a significant dependence on both the transverse momentum
and the measured charged-particle multiplicity. At low multiplicity, the ratio
measured at LHCb is consistent with the value measured in
collisions, and increases by a factor of with increasing multiplicity.
At relatively low transverse momentum, the ratio of to
cross-sections is higher than what is measured in
collisions, but converges with the ratio as the momentum
increases. These results imply that the evolution of heavy quarks into
final-state hadrons is influenced by the density of the hadronic environment
produced in the collision. Comparisons with a statistical hadronization model
and implications for the mechanisms enforcing quark confinement are discussed.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-027.html (LHCb
public pages
Fraction of decays in prompt production measured in pPb collisions at TeV
The fraction of and decays in the prompt
yield, , is measured by
the LHCb detector in pPb collisions at TeV. The study
covers the forward () and backward () rapidity
regions, where is the rapidity in the nucleon-nucleon
center-of-mass system. Forward and backward rapidity samples correspond to
integrated luminosities of 13.6 0.3 nb and 20.8 0.5
nb, respectively. The result is presented as a function of the
transverse momentum in the range 1 GeV/.
The fraction at forward rapidity is compatible with the LHCb
measurement performed in collisions at TeV, whereas the
result at backward rapidity is 2.4 larger than in the forward region
for GeV/. The increase of at low at backward rapidity is compatible with the suppression of the
(2S) contribution to the prompt yield. The lack of in-medium
dissociation of states observed in this study sets an upper limit of
180 MeV on the free energy available in these pPb collisions to dissociate or
inhibit charmonium state formation.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-028.html (LHCb
public pages
- âŠ