230 research outputs found
The EDELWEISS Experiment : Status and Outlook
The EDELWEISS Dark Matter search uses low-temperature Ge detectors with heat
and ionisation read- out to identify nuclear recoils induced by elastic
collisions with WIMPs from the galactic halo. Results from the operation of 70
g and 320 g Ge detectors in the low-background environment of the Modane
Underground Laboratory (LSM) are presented.Comment: International Conference on Dark Matter in Astro and Particle Physics
(Dark 2000), Heidelberg, Germany, 10-16 Jul 2000, v3 minor revision
First Results of the EDELWEISS WIMP Search using a 320 g Heat-and-Ionization Ge Detector
The EDELWEISS collaboration has performed a direct search for WIMP dark
matter using a 320 g heat-and-ionization cryogenic Ge detector operated in a
low-background environment in the Laboratoire Souterrain de Modane. No nuclear
recoils are observed in the fiducial volume in the 30-200 keV energy range
during an effective exposure of 4.53 kg.days. Limits for the cross-section for
the spin-independent interaction of WIMPs and nucleons are set in the framework
of the Minimal Supersymmetric Standard Model (MSSM). The central value of the
signal reported by the experiment DAMA is excluded at 90% CL.Comment: 14 pages, Latex, 4 figures. Submitted to Phys. Lett.
SICANE: a Detector Array for the Measurement of Nuclear Recoil Quenching Factors using Monoenergetic Neutron Beam
SICANE is a neutron scattering multidetector facility for the determination
of the quenching factor (ratio of the response to nuclear recoils and to
electrons) of cryogenic detectors used in direct WIMP searches. Well collimated
monoenergetic neutron beams are obtained with inverse (p,n) reactions. The
facility is described, and results obtained for the quenching factors of
scintillation in NaI(Tl) and of heat and ionization in Ge are presented.Comment: 30 pages, Latex, 11 figures. Submitted to NIM
Optimizing EDELWEISS detectors for low-mass WIMP searches
The physics potential of EDELWEISS detectors for the search of low-mass weakly interacting massive particles (WIMPs) is studied. Using a data-driven background model, projected exclusion limits are computed using frequentist and multivariate analysis approaches, namely, profile likelihood and boosted decision tree. Both current and achievable experimental performances are considered. The optimal strategy for detector optimization depends critically on whether the emphasis is put on WIMP masses below or above ∼5 GeV/c2. The projected sensitivity for the next phase of the EDELWEISS-III experiment at the Modane Underground Laboratory (LSM) for low-mass WIMP search is presented. By 2018 an upper limit on the spin-independent WIMP-nucleon cross section of σSI=7×10−42 cm2 is expected for a WIMP mass in the range 2–5 GeV/c2. The requirements for a future hundred-kilogram-scale experiment designed to reach the bounds imposed by the coherent scattering of solar neutrinos are also described. By improving the ionization resolution down to 50 eVee, we show that such an experiment installed in an even lower background environment (e.g., at SNOLAB) together with an exposure of 1000 kg⋅yr, should allow us to observe about 80 8B neutrino events after discrimination
A detection system to measure muon-induced neutrons for direct Dark Matter searches
International audienceMuon-induced neutrons constitute a prominent background component in a number of low count rate experiments, namely direct searches for Dark Matter. In this work we describe a neutron detector to measure this background in an underground laboratory, the Laboratoire Souterrain de Modane. The system is based on 1 m of Gd-loaded scintillator and it is linked with the muon veto of the EDELWEISS-II experiment for coincident muon detection. The system was installed in autumn 2008 and passed since then a number of commissioning tests proving its full functionality. The data-taking is continuously ongoing and a count rate of the order of 1 muon-induced neutron per day has been achieved
Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach
We report on a dark matter search for a Weakly Interacting Massive Particle (WIMP) in the mass range mχ∈[4,30]GeV/c2 with the EDELWEISS-III experiment. A 2D profile likelihood analysis is performed on data from eight selected detectors with the lowest energy thresholds leading to a combined fiducial exposure of 496 kg-days. External backgrounds from γ- and β-radiation, recoils from 206Pb and neutrons as well as detector intrinsic backgrounds were modelled from data outside the region of interest and constrained in the analysis. The basic data selection and most of the background models are the same as those used in a previously published analysis based on boosted decision trees (BDT) [1]. For the likelihood approach applied in the analysis presented here, a larger signal efficiency and a subtraction of the expected background lead to a higher sensitivity, especially for the lowest WIMP masses probed. No statistically significant signal was found and upper limits on the spin-independent WIMP-nucleon scattering cross section can be set with a hypothesis test based on the profile likelihood test statistics. The 90 % C.L. exclusion limit set for WIMPs with mχ=4GeV/c2 is 1.6×10-39cm2, which is an improvement of a factor of seven with respect to the BDT-based analysis. For WIMP masses above 15GeV/c2 the exclusion limits found with both analyses are in good agreement
Complete event-by-event α/γ(β) separation in a full-size TeO2 CUORE bolometer by simultaneous heat and light detection
The CUORE project began recently a search for neutrinoless double-beta decay () of Te with a (1 ton) TeO bolometer array. In this experiment, the background suppression relies essentially on passive shielding, material radiopurity and anti-coincidences. The lack of particle identification in CUORE makes decays at the detector surface the dominant background, at the level of 0.01 counts/(keV kg y) in the region of interest (-value of of the order of 2.5 MeV). In the present work we demonstrate, for the first time with a CUORE-size (555 cm) TeO bolometer and using the same technology as CUORE for the readout of the bolometric signals, an efficient particle discrimination (99.9\%) with a high acceptance of the signal (about 96\%). This unprecedented result was possible thanks to the superior performance (10 eV RMS baseline noise) of a Neganov-Luke-assisted germanium bolometer used to detect a tiny (70 eV) light signal dominated by ()-induced Cherenkov radiation in the TeO detector. The obtained results represent a major breakthrough towards the TeO-based version of CUPID, a ton-scale cryogenic experiment proposed as a follow-up to CUORE with particle identification
Development of Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search
We report recent achievements in the development of scintillating bolometers to search for neutrinoless double-beta decay of Mo. The presented results have been obtained in the framework of the LUMINEU, LUCIFER and EDELWEISS collaborations, and are now part of the R\&D activities towards CUPID (CUORE Update with Particle IDentification), a proposed next-generation double-beta decay experiment based on the CUORE experience. We have developed a technology for the production of large mass (1 kg), high optical quality, radiopure zinc and lithium molybdate crystal scintillators (ZnMoO and LiMoO, respectively) from deeply purified natural and Mo-enriched molybdenum. The procedure is applied for a routine production of enriched crystals. Furthermore, the technology of a single detector module consisting of a large-volume (~cm) ZnMoO and LiMoO scintillating bolometer has been established, demonstrating performance and radiopurity that are close to satisfy the demands of CUPID. In particular, the FWHM energy resolution of the detectors at 2615 keV --- near the -value of the double-beta transition of Mo (3034~keV) --- is 4--10~keV. The achieved rejection of -induced dominant background above 2.6~MeV is at the level of more than 99.9\%. The bulk activity of Th (Th) and Ra in the crystals is below 10 Bq/kg. Both crystallization and detector technologies favor LiMoO, which was selected as a main element for the realization of a CUPID demonstrator (CUPID-0/Mo) with 7 kg of Mo
- …
