51 research outputs found

    ПОБУДОВА ПОВЕРХОНЬ ЗА ДОПОМОГОЮ ТЕХНОЛОГІЇ T-СПЛАЙНІВ

    Get PDF
    It was maked a review and comparative analysis of modern methods of building of surfaces, namely, T-Splines and NURBS. Also was considered  the main features, characteristics, advantages and disadvantages of T-Splines.Проведен обзор и сравнительный анализ современных методов построения поверхностей, а именно Т-сплайнов и NURBS. Рассмотрены основные черты Т-сплайнов, их особенности, преимущества и недостатки.Проведено огляд та порівняльний аналіз сучасних методів побудови поверхонь, а саме Т-сплайнів і NURBS. Розглянуто  основні риси Т-сплайнів, їхні особливості, переваги та недоліки

    Environment, Ram Pressure, and Shell Formation in HoII

    Get PDF
    Neutral hydrogen VLA D-array observations of the dwarf irregular galaxy HoII, a prototype galaxy for studies of shell formation, are presented. HI is detected to radii over 16' or 4 R_25, and M_HI=6.44x10^8 M_sun. The total HI map has a comet-like appearance suggesting that HoII is affected by ram pressure from an intragroup medium (IGM). A rotation curve corrected for asymmetric drift was derived and an analysis of the mass distribution yields a total mass 6.3x10^9 M_sun, of which about 80% is dark. HoII lies northeast of the M81 group's core, along with Kar52 (M81dwA) and UGC4483. No signs of interaction are observed and it is argued that HoII is part of the NGC2403 subgroup, infalling towards M81. A case is made for ram pressure stripping and an IGM in the M81 group. Stripping of the disk outer parts would require an IGM density n_IGM>=4.0x10^-6 atoms/cm^3 at the location of HoII. This corresponds to 1% of the virial mass of the group uniformly distributed over a volume just enclosing HoII and is consistent with the X-ray properties of small groups. It is argued that existing observations of HoII do not support self-propagating star formation scenarios, whereby the HI holes and shells are created by supernova explosions and stellar winds. Many HI holes are located in low surface density regions of the disk, where no star formation is expected or observed. Ram pressure has the capacity to enlarge preexisting holes and lower their creation energies, helping to bridge the gap between the observed star formation rate and that required to create the holes. (abridged)Comment: 43 pages, including 7 figures. 4 figures available as JPEG only. Complete manuscript including full resolution figures available at http://www.strw.leidenuniv.nl/~bureau/pub_list.html . Accepted for publication in The Astronomical Journa

    Dark Matter and the CACTUS Gamma-Ray Excess from Draco

    Get PDF
    The CACTUS atmospheric Cherenkov telescope collaboration recently reported a gamma-ray excess from the Draco dwarf spheroidal galaxy. Draco features a very low gas content and a large mass-to-light ratio, suggesting as a possible explanation annihilation of weakly interacting massive particles (WIMPs) in the Draco dark-matter halo. We show that with improved angular resolution, future measurements can determine whether the halo is cored or cuspy, as well as its scale radius. We find the relevant WIMP masses and annihilation cross sections and show that supersymmetric models can account for the required gamma-ray flux. The annihilation cross section range is found to be not compatible with a standard thermal relic dark-matter production. We compute for these supersymmetric models the resulting Draco gamma-ray flux in the GLAST energy range and the rates for direct neutralino detection and for the flux of neutrinos from neutralino annihilation in the Sun. We also discuss the possibility that the bulk of the signal detected by CACTUS comes from direct WIMP annihilation to two photons and point out that a decaying-dark-matter scenario for Draco is not compatible with the gamma-ray flux from the Galactic center and in the diffuse gamma-ray background.Comment: 24 pages, 10 figures; version accepted for publication in JCA

    Observational Manifestations of the First Protogalaxies in the 21 cm Line

    Full text link
    The absorption properties of the first low-mass protogalaxies (mini-halos) forming at high redshifts in the 21-cm line of atomic hydrogen are considered. The absorption properties of these protogalaxies are shown to depend strongly on both their mass and evolutionary status. The optical depths in the line reach \sim0.1-0.2 for small impact parameters of the line of sight. When a protogalaxy being compressed, the influence of gas accretion can be seen manifested in a non-monotonic frequency dependence of the optical depth. The absorption characteristics in the 21-cm line are determined by the thermal and dynamical evolution of the gas in protogalaxies. Since the theoretical line width in the observer's reference frame is 1-6 kHz and the expected separation between lines 8.4 kHz, the lines from low mass protogalaxies can be resolved using ongoing and future low frequency interferometers.Comment: 12 pages, 5 figure

    Dark Matter signals from Draco and Willman 1: Prospects for MAGIC II and CTA

    Full text link
    The next generation of ground-based Imaging Air Cherenkov Telescopes (IACTs) will play an important role in indirect dark matter searches. In this article, we consider two particularly promising candidate sources for dark matter annihilation signals, the nearby dwarf galaxies Draco and Willman 1, and study the prospects of detecting such a signal for the soon-operating MAGIC II telescope system as well as for the planned installation of CTA, taking special care of describing the experimental features that affect the detectional prospects. For the first time in such a study, we fully take into account the effect of internal bremsstrahlung, which has recently been shown to considerably enhance, in some cases, the gamma-ray flux at the high energies where Atmospheric Cherenkov Telescopes operate, thus leading to significantly harder annihilation spectra than traditionally considered. While the detection of the spectral features introduced by internal bremsstrahlung would constitute a smoking gun signature for dark matter annihilation, we find that for most models the overall flux still remains at a level that will be challenging to detect unless one adopts rather (though by no means overly) optimistic astrophysical assumptions about the distribution of dark matter in the dwarfs.Comment: 10 pages, 4 figures, minor changes, matches the published version (JCAP

    The Star Formation & Chemical Evolution History of the Fornax Dwarf Spheroidal Galaxy

    Get PDF
    We present deep photometry in the B,V and I filters from CTIO/MOSAIC for about 270.000 stars in the Fornax dwarf Spheroidal galaxy, out to a radius of r_ell\sim0.8 degrees. By combining the accurately calibrated photometry with the spectroscopic metallicity distributions of individual Red Giant Branch stars we obtain the detailed star formation and chemical evolution history of Fornax. Fornax is dominated by intermediate age (1-10 Gyr) stellar populations, but also includes ancient (10-14 Gyr), and young (<1 Gyr) stars. We show that Fornax displays a radial age gradient, with younger, more metal-rich populations dominating the central region. This confirms results from previous works. Within an elliptical radius of 0.8 degrees, or 1.9 kpc from the centre, a total mass in stars of 4.3x10^7 Msun was formed, from the earliest times until 250 Myr ago. Using the detailed star formation history, age estimates are determined for individual stars on the upper RGB, for which spectroscopic abundances are available, giving an age-metallicity relation of the Fornax dSph from individual stars. This shows that the average metallicity of Fornax went up rapidly from [Fe/H]<-2.5 dex to [Fe/H]=-1.5 dex between 8-12 Gyr ago, after which a more gradual enrichment resulted in a narrow, well-defined sequence which reaches [Fe/H]\sim-0.8 dex, \sim3 Gyr ago. These ages also allow us to measure the build-up of chemical elements as a function of time, and thus determine detailed timescales for the evolution of individual chemical elements. A rapid decrease in [Mg/Fe] is seen for the stars with [Fe/H]>-1.5 dex, with a clear trend in age.Comment: 18 pages, 20 figure

    Catalogue of far-infrared loops in the Galaxy

    Get PDF
    Aims: An all-sky survey of loop- and arc-like intensity enhancements has been performed in order to investigate the large-scale structure of the diffuse far-infrared emission. Methods: We used maps made of 60 and 100 micrometer processed IRAS data (Sky Survey Atlas and dust infrared emission maps) to identify large-scale structures: loops, arcs or cavities, in the far-infrared emission in the Galaxy. Distances were attributed to a subsample of loops using associated objects. Results: We identified 462 far-infrared loops, analyzed their individual FIR properties and their distribution. This data forms the Catalogue of Far-Infrared Loops in the Galaxy. We obtained observational estimates of f_in~30% and f_out~5% for the hot gas volume filling factor of the inward and outward Galactic neighbourhood of the Solar System. We obtained a slope of the power law size luminosity function {beta}=1.37 for low Galactic latitudes in the outer Milky Way. Conclusions: Deviations in the celestial distribution of far-infrared loops clearly indicate, that violent events frequently overwrite the structure of the interstellar matter in the inner Galaxy. Our objects trace out the spiral arm structure of the Galaxy in the neighbourhood of the Sun and their distribution clearly suggests that there is an efficient process that can generate loop-like features at high Galactic latitudes. Power law indices of size luminosity distributions suggest, that the structure of the ISM is ruled by supernovae and stellar winds at low Galactic latitudes while it is governed by supersonic turbulence above the Galactic plane.Comment: 11 pages - 10 figures (together with Appendix A), accepted for publication in Astronomy & Astrophysics. Appendix B, C and D are available at http://kisag.konkoly.hu/CFIRLG

    Dark Matter in the Milky Way's Dwarf Spheroidal Satellites

    Full text link
    The Milky Way's dwarf spheroidal satellites include the nearest, smallest and least luminous galaxies known. They also exhibit the largest discrepancies between dynamical and luminous masses. This article reviews the development of empirical constraints on the structure and kinematics of dSph stellar populations and discusses how this phenomenology translates into constraints on the amount and distribution of dark matter within dSphs. Some implications for cosmology and the particle nature of dark matter are discussed, and some topics/questions for future study are identified.Comment: A version with full-resolution figures is available at http://www.cfa.harvard.edu/~mwalker/mwdsph_review.pdf; 70 pages, 22 figures; invited review article to be published in Vol. 5 of the book "Planets, Stars, and Stellar Systems", published by Springe

    Dynamics of Disks and Warps

    Full text link
    This chapter reviews theoretical work on the stellar dynamics of galaxy disks. All the known collective global instabilities are identified, and their mechanisms described in terms of local wave mechanics. A detailed discussion of warps and other bending waves is also given. The structure of bars in galaxies, and their effect on galaxy evolution, is now reasonably well understood, but there is still no convincing explanation for their origin and frequency. Spiral patterns have long presented a special challenge, and ideas and recent developments are reviewed. Other topics include scattering of disk stars and the survival of thin disks.Comment: Chapter accepted to appear in Planets, Stars and Stellar Systems, vol 5, ed G. Gilmore. 32 pages, 17 figures. Includes minor corrections made in proofs. Uses emulateapj.st
    corecore