385 research outputs found
A psychoeducational intervention for early-stage caregivers of older Iowans: a pilot study
Current literature on older adult care focuses on the burden of caregiving, predictors of institutionalization, caregiver impact on mental health, and usage of home and community-based care. However, gaps in literature exist regarding informal older adult caregivers\u27 knowledge of home and community-based services and awareness of service availability in their community. The primary objective of this study was to test the efficacy of a one-session psychoeducational intervention for informal caregivers\u27 of older Iowans aimed at increasing knowledge and awareness of long-term services and supports (LTSS) availability as well as caregiver feelings of preparedness. To conduct this study, a one-session psychoeducational workshop for caregivers was held in twelve communities across Iowa. Community organizations and faith-based groups were recruited to host each workshop, and the host organizations then recruited participants. The intervention workshop covered common caregiving concerns, locating resources locally, and designing a care plan. Results indicate that the intervention was effective in significantly improving caregivers\u27 LTSS knowledge and awareness of availability. The intervention did have a positive effect for many caregivers in improving feelings of preparedness; however, the session was also associated with decreased self-efficacy for some caregivers. Age and education were related to caregiver outcomes and analyses suggest a more complex picture, particularly regarding self-efficacy. Further research specifically targeting underserved populations, as well as those in the early or pre-planning stages of caregiving, is needed to more fully understand prevention and intervention efforts aimed at enhancing care and improving caregivers\u27 experiences
The Ty1 integrase protein can exploit the classical nuclear protein import machinery for entry into the nucleus
Like its retroviral relatives, the long terminal repeat retrotransposon Ty1 in the yeast Saccharomyces cerevisiae must traverse a permanently intact nuclear membrane for successful transposition and replication. For retrotransposition to occur, at least a subset of Ty1 proteins, including the Ty1 integrase, must enter the nucleus. Nuclear localization of integrase is dependent upon a C-terminal nuclear targeting sequence. However, the nuclear import machinery that recognizes this nuclear targeting signal has not been defined. We investigated the mechanism by which Ty1 integrase gains access to nuclear DNA as a model for how other retroelements, including retroviruses like HIV, may utilize cellular nuclear transport machinery to import their essential nuclear proteins. We show that Ty1 retrotransposition is significantly impaired in yeast mutants that alter the classical nuclear protein import pathway, including the Ran-GTPase, and the dimeric import receptor, importin-α/β. Although Ty1 proteins are made and processed in these mutant cells, our studies reveal that an integrase reporter is not properly targeted to the nucleus in cells carrying mutations in the classical nuclear import machinery. Furthermore, we demonstrate that integrase coimmunoprecipitates with the importin-α transport receptor and directly binds to importin-α. Taken together, these data suggest Ty1 integrase can employ the classical nuclear protein transport machinery to enter the nucleus
A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke
Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential
signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P =
1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes
Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways
OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels.
RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.
RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c.
CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
Određivanje alergena Asp f 1 (Aspergillus fumigatus) u peradarniku enzimimunokemijskom metodom
Poultry farms contain high levels of allergenic fungi, and Aspergillus spp. is the most common genus of moulds. Aspergillus fumigatus antigens are responsible for the development of several respiratory diseases including asthma. The aim of this study was to measure the mass fraction of Asp f 1, a major allergen of Asperillus fumigatus in 37 indoor dust samples collected from four poultry farms in a rural area of the Zagreb County (Croatia) using the enzyme-linked immunosorbent assay. More than 62 % of dust samples had detectable Asp f 1 levels (limit of detection 3.6 ng g-1). The overall mean Asp f 1 level was 17.9 ng g-1 [range (3.8 to 72.4) ng g-1]. Satisfactory results were obtained for analytical within-run imprecision
(6.7 %), between-run imprecision (10.5 %), and accuracy (91 % to 115 %). Microclimate parameters (air temperature, relative humidity, and velocity) were within the recommended ranges in all poultry farms.
This study has shown that Asp f 1 settles on dust at poultry farms and that occupational exposure to this allergen deserves monitoring in livestock buildings.Peradarnici sadržavaju veliku koncentraciju alergenih plijesni, a rod Aspergillus najčešće je zastupljen.
Antigeni soja Aspergillus fumigatus odgovorni su za nastanak nekoliko respiratornih bolesti uključujući astmu. Cilj ovoga rada bio je odrediti masenu frakciju Asp f 1, glavnog alergena soja Asperillus fumigatus u 37 uzoraka prašine uzorkovanih u četiri peradarnika sa šireg područja Zagrebačke županije rabeći enzimimunokemijsku
metodu. Više od 62 % uzoraka prašine u tri peradarnika imalo je mjerljivu koncentraciju Asp f 1 (granica detekcije = 3.6 ng g-1). Ukupni srednji maseni udio Asp f 1 iznosio je 17.9 ng g-1 (raspon od
3.8 ng g-1 do 72.4 ng g-1). Dobiveni su zadovoljavajući rezultati za analitičku nepreciznost u seriji (6.7 %), nepreciznost iz dana u dan (10.5 %) i točnost (91 % do 115 %). Mikroklimatski parametri (temperatura zraka, relativna vlaga i protok zraka) u svim peradarnicima bili su u okviru preporučenih vrijednosti.
Rezultati ovoga rada pokazuju da Asp f 1 sedimentira na prašinu u peradarnicima te da profesionalnu izloženost tom alergenu treba pratiti u jedinicama za uzgoj stoke
Sequence Imputation of HPV16 Genomes for Genetic Association Studies
Human Papillomavirus type 16 (HPV16) causes over half of all cervical cancer and some HPV16 variants are more oncogenic than others. The genetic basis for the extraordinary oncogenic properties of HPV16 compared to other HPVs is unknown. In addition, we neither know which nucleotides vary across and within HPV types and lineages, nor which of the single nucleotide polymorphisms (SNPs) determine oncogenicity.A reference set of 62 HPV16 complete genome sequences was established and used to examine patterns of evolutionary relatedness amongst variants using a pairwise identity heatmap and HPV16 phylogeny. A BLAST-based algorithm was developed to impute complete genome data from partial sequence information using the reference database. To interrogate the oncogenic risk of determined and imputed HPV16 SNPs, odds-ratios for each SNP were calculated in a case-control viral genome-wide association study (VWAS) using biopsy confirmed high-grade cervix neoplasia and self-limited HPV16 infections from Guanacaste, Costa Rica.HPV16 variants display evolutionarily stable lineages that contain conserved diagnostic SNPs. The imputation algorithm indicated that an average of 97.5±1.03% of SNPs could be accurately imputed. The VWAS revealed specific HPV16 viral SNPs associated with variant lineages and elevated odds ratios; however, individual causal SNPs could not be distinguished with certainty due to the nature of HPV evolution.Conserved and lineage-specific SNPs can be imputed with a high degree of accuracy from limited viral polymorphic data due to the lack of recombination and the stochastic mechanism of variation accumulation in the HPV genome. However, to determine the role of novel variants or non-lineage-specific SNPs by VWAS will require direct sequence analysis. The investigation of patterns of genetic variation and the identification of diagnostic SNPs for lineages of HPV16 variants provides a valuable resource for future studies of HPV16 pathogenicity
- …