865 research outputs found

    Detailed Abundances for the Old Population near the Galactic Center: I. Metallicity distribution of the Nuclear Star Cluster

    Get PDF
    We report the first high spectral resolution study of 17 M giants kinematically confirmed to lie within a few parsecs of the Galactic Center, using R=24,000 spectroscopy from Keck/NIRSPEC and a new linelist for the infrared K band. We consider their luminosities and kinematics, which classify these stars as members of the older stellar population and the central cluster. We find a median metallicity of =-0.16 and a large spread from approximately -0.3 to +0.3 (quartiles). We find that the highest metallicities are [Fe/H]<+0.6, with most of the stars being at or below the Solar iron abundance. The abundances and the abundance distribution strongly resembles that of the Galactic bulge rather than disk or halo; in our small sample we find no statistical evidence for a dependence of velocity dispersion on metallicity.Comment: 18 pages, 14 figures, accepted for publication in A

    AGAPEROS: Searching for variable stars in the LMC Bar II. Temporal and near-IR analysis of Long-Period Variables

    Get PDF
    We analysed the light curves of a large sample of long period variables in the LMC from the AGAPEROS catalogue. The (non)regularity of the light change is discussed in detail showing that the majority of the light curves cannot be described properly by a single period. We show that semiregular and small amplitude variability do not necessarily correlate as has been assumed in several previous studies. Using near-infrared data from the DENIS survey we correlate the light change with colours and luminosities of the objects. These results are used to compare long period variables in the LMC with LPVs in the Galactic Bulge and in the solar neighborhood.Comment: 12 pages, 15 figures accepted for publication in A&

    Evidence against anomalous compositions for giants in the Galactic Nuclear Star Cluster

    Get PDF
    Very strong Sc I lines have been found recently in cool M giants in the Nuclear Star Cluster in the Galactic Center. Interpreting these as anomalously high scandium abundances in the Galactic Center would imply a unique enhancement signature and chemical evolution history for nuclear star clusters, and a potential test for models of chemical enrichment in these objects. We present high resolution K-band spectra (NIRSPEC/Keck II) of cool M giants situated in the solar neighborhood and compare them with spectra of M giants in the Nuclear Star Cluster. We clearly identify strong Sc I lines in our solar neighborhood sample as well as in the Nuclear Star Cluster sample. The strong Sc I lines in M giants are therefore not unique to stars in the Nuclear Star Cluster and we argue that the strong lines are a property of the line formation process that currently escapes accurate theoretical modeling. We further conclude that for giant stars with effective temperatures below approximately 3800 K these Sc I lines should not be used for deriving the scandium abundances in any astrophysical environment until we better understand how these lines are formed. We also discuss the lines of vanadium, titanium, and yttrium identified in the spectra, which demonstrate a similar striking increase in strength below 3500 K effective temperature.Comment: 11 pages, 6 figures, accepted for publication in Ap

    Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    Full text link
    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12^{12}C/13^{13}C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff3100T_{\rm eff}\approx3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly sub-solar mean metallicity and only few stars with super-solar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O<<1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.Comment: 21 pages, 13 figures, 6 tables (incl. appendix), years of work, published in MNRA

    Mid-IR period-magnitude relations for AGB stars

    Full text link
    Asymptotic Giant Branch variables are found to obey period-luminosity relations in the mid-IR similar to those seen at K_S (2.14 microns), even at 24 microns where emission from circumstellar dust is expected to be dominant. Their loci in the M, logP diagrams are essentially the same for the LMC and for NGC6522 in spite of different ages and metallicities. There is no systematic trend of slope with wavelength. The offsets of the apparent magnitude vs. logP relations imply a difference between the two fields of 3.8 in distance modulus. The colours of the variables confirm that a principal period with log P > 1.75 is a necessary condition for detectable mass-loss. At the longest observed wavelength, 24 microns, many semi-regular variables have dust shells comparable in luminosity to those around Miras. There is a clear bifurcation in LMC colour-magnitude diagrams involving 24 micron magnitudes.Comment: 5 pages, 4 figure

    Interstellar Extinction and Long-Period Variables in the Galactic Center

    Get PDF
    We use the Spitzer IRAC catalogue of the Galactic Center (GC) point sources (Ramirez et al. 2008) and combine it with new isochrones (Marigo et al. 2008) to derive extinctions based on photometry of red giants and asymptotic giant branch (AGB) stars. This new extinction map extends to much higher values of Av than previoulsy available. Our new extinction map of the GC region covers 2.0 x 1.4 degree (280 x 200 pc at a distance of 8 kpc). We apply it to deredden the LPVs found by Glass et al. (2001) near the GC. We make period-magnitude diagrams and compare them to those from other regions of different metallicity. The Glass-LPVs follow well-defined period-luminosity relations (PL) in the IRAC filter bands at 3.6, 4.5, 5.8, and 8.0 micron. The period-luminosity relations are similar to those in the Large Magellanic Cloud, suggesting that the PL relation in the IRAC bands is universal. We use ISOGAL data to derive mass-loss rates and find for the Glass-LPV sample some correlation between mass-loss and pulsation period, as expected theoretically.The GC has an excess of high luminosity and long period LPVs compared to the Bulge, which supports previous suggestions that it contains a younger stellar population.Comment: 12 pages, 11 figures accepted for publication in Astronomy & Astrophysic

    Explanatory Supplement of the ISOGAL-DENIS Point Source Catalogue

    Get PDF
    We present version 1.0 of the ISOGAL-DENIS Point Source Catalogue (PSC), containing more than 100,000 point sources detected at 7 and/or 15 micron in the ISOGAL survey of the inner Galaxy with the ISOCAM instrument on board the Infrared Space Observatory (ISO). These sources are cross-identified, wherever possible, with near-infrared (0.8-2.2 micron) data from the DENIS survey. The overall surface covered by the ISOGAL survey is about 16 square degrees, mostly (95%) distributed near the Galactic plane (|b| < 1 deg), where the source extraction can become confusion limited and perturbed by the high background emission. Therefore, special care has been taken aimed at limiting the photometric error to ~0.2 magnitude down to a sensitivity limit of typically 10 mJy. The present paper gives a complete description of the entries and the information which can be found in this catalogue, as well as a detailed discussion of the data processing and the quality checks which have been completed. The catalogue is available via the VizieR Service at the Centre de Donn\'ees Astronomiques de Strasbourg (CDS, http://vizier.u-strasbg.fr/viz-bin/VizieR/) and also via the server at the Institut d'Astrophysique de Paris (http://www-isogal.iap.fr/). A more complete version of this paper, including a detailed description of the data processing, is available in electronic form through the ADS service.Comment: 21 pages, 7 figures. A&A in press. Full length version with 32 figures and detailed description of the data processing is available here: http://www-isogal.iap.fr/Publications/ExplSupplFull.ps.g

    Effect of quantum confinement on exciton-phonon interactions

    Get PDF
    We investigate the homogeneous linewidth of localized type-I excitons in type-II GaAs/AlAs superlattices. These localizing centers represent the intermediate case between quasi-two-dimensional (Q2D) and quasi-zero-dimensional localizations. The temperature dependence of the homogeneous linewidth is obtained with high precision from micro-photoluminescence spectra. We confirm the reduced interaction of the excitons with their environment with decreasing dimensionality except for the coupling to LO-phonons. The low-temperature limit for the linewidth of these localized excitons is five times smaller than that of Q2D excitons. The coefficient of exciton-acoustic-phonon interaction is 5 ~ 6 times smaller than that of Q2D excitons. An enhancement of the average exciton-LO-phonon interaction by localization is found in our sample. But this interaction is very sensitive to the detailed structure of the localizing centers.Comment: 6 pages, 4 figure

    Detection of the Milky Way spiral arms in dust from 3D mapping

    Full text link
    Large stellar surveys are sensitive to interstellar dust through the effects of reddening. Using extinctions measured from photometry and spectroscopy, together with three-dimensional (3D) positions of individual stars, it is possible to construct a three-dimensional dust map. We present the first continuous map of the dust distribution in the Galactic disk out to 7 kpc within 100 pc of the Galactic midplane, using red clump and giant stars from SDSS APOGEE DR14. We use a non-parametric method based on Gaussian Processes to map the dust density, which is the local property of the ISM rather than an integrated quantity. This method models the dust correlation between points in 3D space and can capture arbitrary variations, unconstrained by a pre-specified functional form. This produces a continuous map without line-of-sight artefacts. Our resulting map traces some features of the local Galactic spiral arms, even though the model contains no prior suggestion of spiral arms, nor any underlying model for the Galactic structure. This is the first time that such evident arm structures have been captured by a dust density map in the Milky Way. Our resulting map also traces some of the known giant molecular clouds in the Galaxy and puts some constraints on their distances, some of which were hitherto relatively uncertain.Comment: Accepted for publication in A&A, 9 pages, 7 figure

    Chemical trends in the Galactic halo from APOGEE data

    Get PDF
    Indexación: Web of Science; Scopus.The galaxy formation process in the A cold dark matter scenario can be constrained from the analysis of stars in the Milky Way's halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Observatory Galactic Evolution Experiment ( APOGEE), as a function of distance from the Galactic Centre ( r) and iron abundance ([M/H]), in the range 5 less than or similar to r less than or similar to 30 kpc and - 2.5 15 kpc and [M/H] > - 1.1 (larger in the case of O, Mg, and S) with respect to the nearest halo stars. This result confirms previous claims for low-alpha stars found at larger distances. Chemical differences in elements with other nucleosynthetic origins (Ni, K, Na, and Al) are also detected. C and N do not provide reliable information about the interstellar medium from which stars formed because our sample comprises red giant branch and asymptotic giant branch stars and can experience mixing of material to their surfaces.https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw286
    corecore