65 research outputs found

    Thermal desorption of cryopumped gases from laser treated copper

    Get PDF
    Recently, laser processing of copper samples has been demonstrated to produce rough surfaces whose nanostructuring ensures unquestionable advantages for electron cloud mitigation in future particle accelerators. The actual application of laser treated surfaces in accelerators implies that this new material is compliant with many issues, going from impedance vacuum properties to many others. A significant experimental effort is therefore ongoing to study and optimize their various properties of interest. Here we analyze their vacuum behavior versus temperature. To this end, we studied thermal programmed desorption from CO, CH4{\mathrm{CH}}_{4} and H2{\mathrm{H}}_{2} once cryosorbed on laser treated copper substrate and on its flat counterpart. These molecules are typically present in the residual vacuum of any accelerator. The results show that the desorption of such gases from the laser treated substrates occurs in a much broader and higher temperature range with respect to what is observed from the flat substrate. We also show that, at equal doses, treated samples adsorb/desorb significantly more gas than their flat counterpart. These findings can be ascribed to their nanostructured porous morphology. A quantitative analysis is given, allowing to properly estimate fluctuations of the number of molecules during unavoidable temperature variations of the cryogenic vacuum system

    On the compatibility of porous surfaces with cryogenic vacuum in future high-energy particle accelerators

    Get PDF
    Recently, pulsed laser processing of Cu samples has been demonstrated to produce rough surfaces whose structuring at the nanoscale ensures an impressive reduction of the secondary electron yield. This feature has an undoubted appealing for applications in future high energy particle accelerators. However, the effective application of such laser treated surfaces in this context requires a rigorous evaluation of their vacuum behavior, especially when used at cryogenic temperatures. To this aim, here, we compare thermal programmed desorption between 20 and 70 K by dosing Ar multilayers of different thicknesses on a laser treated copper substrate and on its flat counterpart. Our results highlight that the spongelike structural features confer to the laser treated sample's non-negligible effects due to the gas-substrate interaction. This results in a much vaster and higher desorption temperature range with respect to what is observed from the flat substrates. This evidence could render it very difficult to find temperature intervals for which detrimental vacuum transients could be avoided in the cryogenic beam pipes. On these bases, although the electron cloud mitigation efficiency has been settled, before definitely including porous surfaces in any cryogenic machine design, all the consequences of having a rough rather than a flat wall should be carefully evaluated

    Prevalence of interstitial pneumonia suggestive of COVID-19 at 18F-FDG PET/CT in oncological asymptomatic patients in a high prevalence country during pandemic period: a national multi-centric retrospective study

    Get PDF
    Purpose: To assess the presence and pattern of incidental interstitial lung alterations suspicious of COVID-19 on fluorine-18-fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT) ([18F]FDG PET/CT) in asymptomatic oncological patients during the period of active COVID-19 in a country with high prevalence of the virus. Methods: This is a multi-center retrospective observational study involving 59 Italian centers. We retrospectively reviewed the prevalence of interstitial pneumonia detected during the COVID period (between March 16 and 27, 2020) and compared to a pre-COVID period (January\u2013February 2020) and a control time (in 2019). The diagnosis of interstitial pneumonia was done considering lung alterations of CT of PET. Results: Overall, [18F]FDG PET/CT was performed on 4008 patients in the COVID period, 19,267 in the pre-COVID period, and 5513 in the control period. The rate of interstitial pneumonia suspicious for COVID-19 was significantly higher during the COVID period (7.1%) compared with that found in the pre-COVID (5.35%) and control periods (5.15%) (p < 0.001). Instead, no significant difference among pre-COVID and control periods was present. The prevalence of interstitial pneumonia detected at PET/CT was directly associated with geographic virus diffusion, with the higher rate in Northern Italy. Among 284 interstitial pneumonia detected during COVID period, 169 (59%) were FDG-avid (average SUVmax of 4.1). Conclusions: A significant increase of interstitial pneumonia incidentally detected with [18F]FDG PET/CT has been demonstrated during the COVID-19 pandemic. A majority of interstitial pneumonia were FDG-avid. Our results underlined the importance of paying attention to incidental CT findings of pneumonia detected at PET/CT, and these reports might help to recognize early COVID-19 cases guiding the subsequent management

    A new national survey of centers for cognitive disorders and dementias in Italy

    Get PDF
    IntroductionA new national survey has been carried out by the Italian Centers for Cognitive Disorders and Dementias (CCDDs). The aim of this new national survey is to provide a comprehensive description of the characteristics, organizational aspects of the CCDDs, and experiences during the COVID-19 pandemic.MethodsA list of all national CCDDs was requested from the delegates of each Italian region. The online questionnaire is divided in two main sections: a profile section, containing information on location and accessibility, and a data collection form covering organization, services, treatments, activities, and any service interruptions caused by the COVID-19 outbreak.ResultsIn total, 511 out of 534 (96%) facilities completed the profile section, while 450 out of 534 (84%) CCDDs also completed the data collection form. Almost half of the CCDDs (55.1%) operated for 3 or fewer days a week. About one-third of the facilities had at least two professional figures among neurologists, geriatricians and psychiatrists. In 2020, only a third of facilities were open all the time, but in 2021, two-thirds of the facilities were open.ConclusionThis paper provides an update on the current status of CCDDs in Italy, which still shows considerable heterogeneity. The survey revealed a modest improvement in the functioning of CCDDs, although substantial efforts are still required to ensure the diagnosis and care of patients with dementia

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
    corecore