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Abstract

The objective of this paper is to present first results of a running study on optimization of aircraft components
(composite panels of a typical vertical tail plane) by using Genetic Algorithms (GA) and Neural Networks (NN). The
panels considered are standardized to some extent but still there is a wide scope of discrete and continuous design variables
that can be adjusted to increase performance or reduce structural weight. A NN is trained for every panel configuration
using a backpropagation algorithm with data sets taken from finite element analyses spread randomly over the design
space. The trained network is then used to predict the values of the constraint functions (strain and buckling multipliers).
The approach is formulated in this manner to maintain maximum flexibility regarding the implementation of new variables
or models and with the prospect of optimizing the assembly as a whole. Results show that in design problems with high
dimensionality the approach becomes more attractive, especially when the optimization has to be run repeatedly for panels
under different loading/sizing conditions. The optimization algorithm has proven to be robust though dependent on the
smoothness of the network output function. A modified method that feeds back the found optima is proposed to improve
accuracy of the NN and decrease preparation time.

Keywords: Genetic algorithms; Neural networks; Panel buckling; Composites; Optimization

1. Introduction

The optimal design problem of structural aircraft com-
ponents received increasing attention and has been ap-
proached with various different strategies. In this context,
a strategy is commonly defined as a combination of a
structural model evaluation (analytical or numerical) and a
numerical optimization algorithm. Among them, gradient-
based techniques, as nonlinear programming [1], SLP and
SQP gained a great popularity, while biological analogy-
based techniques as evolution strategies or genetic algo-
rithms [2] emerged in the last years as reliable and robust
general-purpose optimization tools. In this paper, the prob-
lem of globally optimizing a structure as a set of inter-
acting sub-components is approached and solved. Neural
networks are used as a global approximate function tool
for the structural evaluation of aircraft components, genetic
algorithms are employed to optimize the spar panel design.
This leads to a reduction of a single optimization runtime,
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so that optimizing an assembly (consisting of more than
40 components) will become affordable. In the following
paragraphs, a short description is given of the structural
problem, the proposed strategy is described and results are
presented for a few sample runs.

2. Structural mechanics

The structural mechanics problem to which the opti-
mization algorithm is applied, consists of a shear loaded
stiffened composite panel with access holes (see Fig. 1).
These panels represent partial idealizations of vertical stiff-
eners (spars) as applied in the Vertical Tail Plane (VTP)
structure of commercial aircraft. A number of design vari-
ables are considered, containing the sequence and number
of stringers and holes on the panel, the offsets of holes and
stringers and the number of plies in the lay-up. Modeling
of the panels was done parametrically, using the Finite Ele-
ment (FE) method. The panels are evaluated for their strain
and buckling reserves using linear static and buckling FE
analyses combined with laminate strain and buckling cri-
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Fig. 1. Parametric panel with holes, stringer and applied loading.

teria. The FE model employs ANSYS SHELL99 elements
capable of modeling shells of layered orthotropic materials
for linear analysis.

3. Optimization

The optimization strategy evaluated, is formulated to fit
the need for a shorter optimization time (that is, optimiza-
tion of a single panel) while allowing all possible designs
to be chosen by the algorithm. The proposed strategy for
optimizing a single panel is displayed schematically in
Fig. 2 and can be formulated as: For given panel length,
width, loading and required access, find the panel with
lowest weight that’s able to resist the load by varying the
stringer and hole numbers, locations and ply number. The
trajectory displays a feedback loop of output data allowing
a reduction of FE evaluations required to train the network,
as proposed in the section Conclusions. Note that the scope
of the full project is a nesting of this routine for all panels
at different locations in a VTP assembly.

The stages indicated in Fig. 2 are reviewed briefly.
(1) A parametric finite element model is implemented

(see Section 2), this model is run using an automated ran-
domized procedure to generate datasets within the function
space. The generation of this database is run parallel and
the database can be applied in a knowledge-based system
for other purposes. The FE model will be referred to as the
“exact” function f (X).

1a. A number of datasets scattered in a partial function
space for a configuration, defined by a sequence of holes
and stringers, is shown. These data sets are used to train
the neural network. The full design space, as mentioned
in Section 2, is covered by a few of these spaces. This
assures that a partial design space (approximated by one
NN) contains no switching type parameters, which is likely
to improve fitting accuracy.

(2) A neural network is applied to fit the approximate
function f̃ (X) through the data points. The MATLAB Neu-
ral Network toolbox was used. A neural network consists

of a series of basic function evaluations (sigmoid functions)
analogous to the neurons in the human brain. The neurons in
a NN are connected by synapses possessing “conductivities”
or weights wi j . A neural network can approximate a func-
tion when supplied with sample data from that function (1a
from Fig. 2). An iterative procedure is applied to reduce the
network error MSE(wi j ) ≡ [

∑
L

∑
k( f̃ (X ,wi j ) − f (X))2]/L

where L the number of training sets and k the number
of network outputs. This training procedure converges as
displayed in Fig. 3. The “order” of f̃ (X) is mainly deter-
mined by the number of neurons in the network. NN are
preferred to polynomial fitting because of implementation
flexibility.

2a. The approximated function supplies an output two
orders of magnitude faster than the FE model, this allows
for extensive search algorithms such as genetic algorithms
to be employed to search an optimal solution.

(3) A MATLAB implemented genetic algorithm (by
Houck et al. [3]) is used to search for an optimal solution
within the approximated function space as defined by the
Neural Networks. Instead of using gradient information to
find an optimal solution a GA employs a strategy analo-
gous to biological evolution maintaining a population of
solutions and running the following stages iteratively:
• Evaluate fitness function (objective and penalties for

constraint violation)
• Rank solutions according to fitness
• Select solutions and recombine their parameters (cross-

over)
• Apply mutation

Because the GA does not use gradient information, it is
less likely to get trapped in a local region of the design
space, furthermore it can implement discrete and continu-
ous parameters simultaneously. Gradient based algorithms
are generally faster than GAs, but GAs are more robust in
their operation as shown by Spallino et al. [4,5]. Robustness
of the algorithm is considered more important as the total
computational cost is dominated by the cost of FE analysis,
which is done independently from the optimization. When
the optimization output is fed back to the neural network as
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Fig. 2. Optimization strategy for one panel (displaying a design space of two inputs and one output for clarity).

shown in Fig. 2 the cost of the GA operation is expected to
become even less significant.

4. Results

In presenting the results obtained from the optimization
procedure a few sample panels were taken from a typical
VTP design. The panels under consideration were opti-
mized to initial data given in Fig. 3. The output of the
procedure is a full parameter set of a feasible panel of
certain configuration as in Fig. 3. The outputs were verified
with the FE model and the deviations found for buckling
multiplier λ and strain ε are given. The networks used

contained one “hidden layer” with a number of neurons
h defined by h = δ · (L − 1) · m/(n + m + 1) where n is
the configuration dependent number of input neurons, the
number of outputs m = 2 and δ = 0.5, as implemented by
Jenkins [6]. The networks were trained using an accuracy
termination of the training phase M SE ≤ 1 · 10−5. A learn-
ing function employing Bayesan regularization (application
of a modified network error function to smoothen the net-
work output, see MATLAB help system [7]) and a learning
rate set to 0.1 (this parameter determines the step size by
which the weights of the neural network can be adjusted
in the network’s learning phase). The GA was run 50 gen-
erations with a population of 40 individuals in about 50
seconds, typical convergence is shown in Fig. 4. The cost
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Fig. 3. Output configurations from NN-GA optimization runs (continuous variable output not displayed).
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Fig. 4. Typical convergence of GA.

is negligible compared to the time needed to generate the
training database (4 days for 5 · 103 data sets spread over
10 configurations on a PC, AMD 1600 processor, 512 MB
RAM) and network training (1 day for 10 networks).

5. Conclusions

The use of neural networks and genetic algorithms for
the optimization of shear loaded composite panels has been
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investigated. The computational effort that is related to
using the investigated method is distributed different from
traditional optimization. The number of FE calculations
that is done in advance is relatively large which makes
the approach attractive mainly to applications where panels
with standard topology have to be optimized repeatedly (as
is the case in airplane industry). In these applications the
fact that the search of the algorithm is wide-ranged and
optimization cost is low weigh heavier than preparation
time. The speed of the optimization makes the procedure
attractive for its intended use in a multi-level strategy. It is
expected that preparation time can be lowered and accuracy
bounds can be narrowed significantly by implementing
feedback of FE checked optimal solutions into the NN
training set.
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