218 research outputs found

    The effect of configurational entropy on acoustic emission of P2-type layered oxide cathodes for sodium-ion batteries

    Get PDF
    Sodium-ion batteries (SIBs) see intensive research and commercialization efforts, aiming to establish them as an alternative to lithium-ion batteries. Among the reported cathode material families for SIBs, Na-deficient P2-type layered oxides are promising candidates, benefiting from fast sodium diffusion and therefore high charge/discharge rates. However, upon sodium extraction at high potentials, a transition from the P2 to O2 phase occurs, with the corresponding change in cell volume resulting in particle fracture and capacity degradation. A possible solution to this is to increase configurational entropy by introducing more elements into the transition-metal layer (so-called high-entropy concept), leading to some kind of structural stabilization. In this work, the acoustic emission (AE) of a series of P2-type layered oxide cathodes with increasing configurational entropy [Na0.67(Mn0.55Ni0.21Co0.24)O2, Na0.67(Mn0.45Ni0.18Co0.24Ti0.1Mg0.03)O2 and Na0.67(Mn0.45Ni0.18Co0.18Ti0.1Mg0.03Al0.04Fe0.02)O2] is recorded during SIB operation and correlated to the materials properties, namely change in c lattice parameter and cracking behavior. A structure-property relationship between entropy, manifested in the extent of phase transition, and detected AE is derived, supported by the classification of signals by peak frequency. This classification in combination with microscopy imaging allows to distinguish between inter- and intragranular fracture. Relatively more intergranular and less intragranular crack formation is observed with increasing configurational entropy

    P2-type layered high-entropy oxides as sodium-ion cathode materials

    Get PDF
    P2-type layered oxides with the general Na-deficient composition NaxTMO2 (x < 1, TM: transition metal) are a promising class of cathode materials for sodium-ion batteries. The open Na+ transport pathways present in the structure lead to low diffusion barriers and enable high charge/discharge rates. However, a phase transition from P2 to O2 structure occurring above 4.2 V and metal dissolution at low potentials upon discharge results in rapid capacity degradation. In this work, we demonstrate the positive effect of configurational entropy on the stability of the crystal structure during battery operation. Three different compositions of layered P2-type oxides were synthesized by solid-state chemistry, Na0.67(Mn0.55Ni0.21Co0.24)O2, Na0.67(Mn0.45Ni0.18Co0.24Ti0.1Mg0.03)O2 and Na0.67(Mn0.45Ni0.18Co0.18Ti0.1Mg0.03Al0.04Fe0.02)O2 with low, medium and high configurational entropy, respectively. The high-entropy cathode material shows lower structural transformation and Mn dissolution upon cycling in a wide voltage range from 1.5 to 4.6 V. Advanced operando techniques and post-mortem analysis were used to probe the underlying reaction mechanism thoroughly. Overall, the high-entropy strategy is a promising route for improving the electrochemical performance of P2 layered oxide cathodes for advanced sodium-ion battery applications

    The bracteatus pineapple genome and domestication of clonally propagated crops

    Get PDF
    Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a 'one-step operation'. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513 Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars 'Smooth Cayenne' and 'Queen' exhibited ancient and recent admixture, while 'Singapore Spanish' supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops

    Decreased level of recent thymic emigrants in CD4+ and CD8+T cells from CML patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>T-cell immunodeficiency is a common feature in cancer patients, which may relate to initiation and development of tumor. Based on our previous finding, to further characterize the immune status, T cell proliferative history was analyzed in CD4+ and CD8+ T cells from chronic myeloid leukemia (CML) patients.</p> <p>Methods</p> <p>Quantitative analysis of ÎŽRec-ψJα signal joint T cell receptor excision circles (sjTRECs) was performed in PBMCs, CD3+, CD4+ and CD8+T cells by real-time PCR, and the analysis of 23 <it>TRBV-D1 </it>sjTRECs was performed by semi-nested PCR. Forty eight CML cases in chronic phase (CML-CP) were selected for this study and 17 healthy individuals served as controls.</p> <p>Results</p> <p>The levels of ÎŽRec-ψJα sjTRECs in PBMCs, CD3+, CD4+, and CD8+ T cells were significantly decreased in CML patients, compared with control groups. Moreover, the numbers of detectable <it>TRBV </it>subfamily sjTRECs, as well as the frequency of particular <it>TRBV-BD</it>1 sjTRECs in patients with CML were significantly lower than those from healthy individuals.</p> <p>Conclusions</p> <p>We observed decreased levels of recent thymic emigrants in CD4+ and CD8+ T cells that may underlay the persistent immunodeficiency in CML patients.</p

    P2-type layered high-entropy oxides as sodium-ion cathode materials

    Get PDF
    P2-type layered oxides with the general Na-deficient composition NaxTMO₂ (x < 1, TM: transition metal) are a promising class of cathode materials for sodium-ion batteries. The open Na+ transport pathways present in the structure lead to low diffusion barriers and enable high charge/discharge rates. However, a phase transition from P2 to O2 structure occurring above 4.2 V and metal dissolution at low potentials upon discharge results in rapid capacity degradation. In this work, we demonstrate the positive effect of configurational entropy on the stability of the crystal structure during battery operation. Three different compositions of layered P2-type oxides were synthesized by solid-state chemistry, Na₀.₆₇(Mn₀.₅₅Ni₀.₂₁Co₀.₂₄)O₂, Na₀.₆₇(Mn₀.₄₅Ni₀.₁₈Co₀.₂₄Ti₀.₁Mg₀.₀₃)O₂ and Na₀.₆₇(Mn₀.₄₅Ni₀.₁₈Co₀.₁₈Ti₀.₁Mg₀.₀₃Al₀.₀₄Fe₀.₀₂)O₂ with low, medium and high configurational entropy, respectively. The high-entropy cathode material shows lower structural transformation and Mn dissolution upon cycling in a wide voltage range from 1.5 to 4.6 V. Advanced operando techniques and post-mortem analysis were used to probe the underlying reaction mechanism thoroughly. Overall, the high-entropy strategy is a promising route for improving the electrochemical performance of P2 layered oxide cathodes for advanced sodium-ion battery applications
    • 

    corecore