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Abstract 

Anaplastic lymphoma kinase (ALK) is an important drug target in many cancers, 

including lymphoma, neuroblastoma and lung cancer. Here, we demonstrate proof-of-

principle for a novel and inexpensive assay for ALK inhibitor activity and identification in 

zebrafish. We demonstrate that the human oncogenic ALK fusion, NPM-ALK, drives 

overproduction of iridophores, a highly visible, shiny pigment cell-type in zebrafish. 

Treatment with the potent ALK inhibitor, TAE684, fully inhibits production of ALK-

dependent iridophores. Using our assay, we test multiple properties of TAE684 in vivo, 

including efficacy, specificity and toxicity. We note that TAE684 also inhibits the 

closely-related leukocyte tyrosine kinase (Ltk) that is required for endogenous 

iridophore development. Similar effects are observed with an independent inhibitor, 

Crizotinib. Our assay can thus be utilised to identify ALK or LTK inhibitors. Importantly, 

the natural reflectivity of iridophores lends itself to automation for high throughput 

assessment of ALK and LTK inhibitor compounds in vivo.
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Introduction 

 Receptor tyrosine kinases (RTKs) are a large family of transmembrane receptor 

proteins with widespread functions in embryonic development (1). They usually 

function by ligand-induced dimerization, resulting in trans-phosphorylation of the 

intracellular kinase domain, and generating docking sites for various adaptor proteins 

triggering multiple intracellular signalling cascades. Elevated RTK activity is a common 

cause of human disease, so that effective RTK inhibitor compounds are in great 

demand as therapeutic agents (2).  

 Anaplastic lymphoma kinase (ALK) is an RTK, first identified in human 

anaplastic large cell lymphoma (ALCL (3)), but subsequently shown to be a key driver 

in a subset of cancers, including neuroblastoma, non-small cell lung cancer (NSCLC), 

and inflammatory myofibroblastic tumours (IMT) (4-8). In all cases, disease is 

associated with elevated ALK signalling, due either to gene amplification or activating 

mutations. In neuroblastoma, activating point mutations (e.g. F1174L) are most 

common (5, 7, 9, 10). In ALCL, IMT and NSCLC, constitutive kinase signalling usually 

results from translocation events generating abnormal fusion proteins (11), such as the 

frequent t(2,5)(p23;q35) translocation resulting in expression of a nucleophosmin 

(NPM)-ALK fusion protein (3).  

 Validation of ALK as an important therapeutic target has led to the development 

of ALK inhibitors, including both the clinically-approved drug Crizotinib (PF-2341066) 

[1] and TAE684 [2](Figure 1), shown to be effective in various in vitro and in vivo 

preclinical and clinical models (12, 13,14, 15). However, Crizotinib resistance is already 

being seen clinically, in one patient resulting from the acquisition of the F1174L 

mutation in the kinase domain (15), underlining the need for novel assays to develop 

ALK inhibitors working through different modalities.  

 Zebrafish have become a valuable research platform for drug discovery and 

development because of the ease of detection of drug efficacy in intact embryos. 
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Previously, we have shown that loss-of-function alleles for leukocyte tyrosine kinase 

(Ltk), the sister kinase to ALK, lack iridophores in zebrafish (16). Iridophores are neural 

crest-derived pigment cells that are clearly visible as shiny silver cells in the developing 

zebrafish embryo. Zebrafish ltk is expressed in the neural crest cells, and acts cell-

autonomously to drive fate-specification of iridophores; ltk mutants lack iridophores due 

to a failure of this iridophore fate specification process, but show otherwise normal 

body morphology (16). Noting the structural similarity between the LTK and ALK kinase 

domains, we reasoned that constitutively activated ALK variants might be able to 

substitute for Ltk function if they were expressed in the zebrafish neural crest. If so, we 

then would be able to test the functional activity of human ALK cancer mutations as 

well as their sensitivity to small molecule inhibition in the zebrafish system by using 

iridophore numbers as a straight-forward phenotypic read-out of ALK activity. Here we 

report that expression of the human oncogenic ALK fusion, NPM-ALK, in zebrafish 

neural crest restores iridophore development in ltk mutant embryos, and can also 

promote ectopic and supernumerary iridophores in wild-type embryos. In addition, we 

used the small molecule ALK inhibitor, TAE684 (13), to provide proof-of-principle 

evidence that loss of NPM-ALK-dependent iridophores can be used as a simple, in vivo 

assay for ALK inhibition. We also observed TAE684-dependent phenocopying of the ltk 

mutant phenotype, and show that this compound also shows inhibitory activity against 

Ltk, consistent with kinome-wide selectivity profiling data. Furthermore, at higher doses 

of TAE684 non-specific effects including shortened body axis and embryonic lethality 

become apparent. Likewise, we show that Crizotinib treatment also inhibits ALK-

dependent iridophores in our zebrafish assay. Treatment with a MEK inhibitor also 

decreased iridophore numbers and sensitized the response to Crizotinib, suggesting 

that MEK signaling lies downstream of ALK/Ltk signaling in iridophore specification. 

Our studies identify powerful new in vivo assays for ALK and LTK inhibitor screening. 

Results and Discussion 
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Human NPM-ALK expression can rescue loss of Ltk signaling in zebrafish. In 

zebrafish, iridophores are prominent shiny cells that cover the eyes, and form a series 

of spots above the brain and above and below the trunk and tail segmental muscle 

blocks (Figure 2b). We have shown that ltk mutants form an allelic series, with the 

strongest alleles (e.g. ltkty82; Figure 2d, h) resulting in embryos showing no iridophores, 

whereas mutants for intermediate alleles have only reduced iridophore numbers; in all 

other respects embryos are morphologically normal, except that the swim bladder fails 

to inflate (16). Similarly, morpholino knockdown of Ltk in wild-type embryos gave good 

phenocopies of the ltk mutant phenotypes (16). In ltkty82 mutants (hereafter referred to 

as ltk mutants) a premature stop codon results in a predicted protein that is truncated 

and completely lacks the tyrosine kinase domain. ALK is 64% identical at the amino 

acid level to LTK (17). We tested whether the human oncogenic ALK variant, NPM-

ALK, which has constitutively active kinase signaling (18, 19), would rescue the ltk 

phenotype (Figure 2a). We generated an expression construct, psox10:NPM-ALK, 

encoding the NPM-ALK fusion under the control of the sox10 promoter shown to drive 

expression in neural crest (20). Injection of this construct into 1-cell stage ltk mutants 

resulted in prominent rescue of iridophores compared with uninjected siblings (Figure 

2d,e). At the doses used in these initial studies, we also saw substantial early 

embryonic lethality, but nevertheless rescue was observed in c. 25% of surviving 

mutant embryos, consistent with the expected highly mosaic distribution of the injected 

plasmid DNA and with the strictly localized expression of the sox10 promoter. Rescued 

iridophores tend to form striking clusters in a position dorsal to the neural tube (Figure 

2e). Furthermore, injected wild-type sibling embryos often showed supernumerary 

and/or ectopic iridophores in addition to the normal complement of (ltk-dependent) 

iridophores (Figure 2b,c).  

We also tested an analogous construct, psox10:NPM-Ltk, in which the ALK coding 

region from the NPM-ALK construct was substituted with the equivalent region of 
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zebrafish Ltk. Again, injection of this construct rescued iridophore development in a 

proportion of ltk mutant embryos, and generated supernumerary and/or ectopic cells in 

wild-type siblings (Figure 2f-i). We note that we have previously used the same 

plasmid, but with GFP or Cre in place of NPM-ALK or NPM-Ltk, to make transgenic 

lines, none of which show changed iridophore patterns (20, 21); similarly a kinase-dead 

version of the NPM-Ltk construct fails to generate supernumerary/ectopic iridophores 

(MN and RNK, unpub. data). We conclude that both the human oncogenic NPM-ALK 

and the NPM-Ltk proteins are able to drive neural crest cells to form iridophores, and 

can substitute for endogenous Ltk activity. 

ALK inhibitor treatment inhibits NPM-ALK activity in vivo. These results 

immediately suggested that the efficacy of candidate ALK inhibitors might be assessed 

in vivo by their addition to the bathing media of transient transgenic NPM-ALK 

embryos; effective compounds should inhibit both the NPM-ALK-dependent iridophores 

in ltk mutants and the NPM-ALK-dependent supernumerary/ectopic cells in wild-type 

embryos. To test this idea, we asked whether the new ALK inhibitor TAE684, known to 

be active against the NPM-ALK fusion in a mammalian context (13), inhibited the 

effects of NPM-ALK expression in the zebrafish. We injected wild-type embryos with 

psox10:NPM-ALK, while control embryos were left uninjected. A lower dose of DNA 

was used in these experiments compared with those described before; this had the 

advantage of lowered embryonic mortality, whilst still retaining a readily detectable 

iridophore phenotype. A proportion of each set of embryos was treated with 2 µM 

TAE684, whereas the remainder were treated with 1% DMSO alone (Figure 3a). At 3 

days post fertilisation (dpf) the iridophore pattern of each embryo was assigned to one 

of three categories: i) normal iridophore pattern, a series of spots above dorsal neural 

tube, but lacking at this stage in dorsal head; ii) embryos with supernumerary or ectopic 

iridophores; and iii) embryos with decreased numbers of iridophores (Figure 3). 

Injection of psox10:NPM-ALK into wild-type embryos gave the expected 
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supernumerary/ectopic iridophore phenotype, whereas plasmid injected, TAE684-

treated sibling embryos showed a striking reduction in this phenotype (Figure 3c,d; 

quantitated in e). We conclude that treatment of transient transgenic embryos with 

TAE684 provides effective inhibition of NPM-ALK-dependent iridophore development, 

providing proof-of-principle that our assay can be used to identify in vivo efficacy of 

ALK inhibitors.  

To confirm this phenotype reflected a specific effect of ALK inhibition, rather than a 

coincidental off-target activity that also affects iridophores, we assessed the effects of 

Crizotinib in our assay. Crizotinib is an ALK/c-MET dual inhibitor with distinct 

pharmacophore and selectivity profile to TAE684. It has recently been demonstrated to 

be the most selective for ALK of a set of 72 kinase inhibitors profiled on >440 kinases 

in a competitive binding assay (22). We repeated our test for inhibition of NPM-ALK 

expressing embryos using Crizotinib treatment and see that this treatment also reduces 

the number of embryos showing ectopic or supernumerary iridophores (Figure 3f). We 

then tested whether this effect can be enhanced by treatment with a sub-optimal dose 

of a MEK inhibitor, PD0325901 [3] (Figure 1), on the basis that MEK signalling is a 

major pathway downstream of receptor tyrosine kinase signalling (23). Interestingly, a 

500 nM dose of PD0325901 alone did not cause a pronounced inhibition of NPM-ALK-

dependent iridophores (Figure 3f). In contrast, combined treatment of NPM-ALK 

injected fish with both PD0325901 and Crizotinib gives an enhanced inhibition of the 

ectopic/supernumerary cells (Figure 3f). We conclude that two independent ALK 

inhibitors each inhibit the iridophore-inducing effect of NPM-ALK expression in 

zebrafish, strongly supporting the suggestion that ALK activity is the key factor driving 

these cells. In addition, our screen appears to be sensitised by treatment with low 

doses of MEK inhibitor. 

TAE684 and Crizotinib-treatment inhibit Ltk activity in zebrafish. Given the sister 

kinase relationship of ALK and LTK, it is expected that even selective ALK inhibitors 
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might also show activity against LTK. Crizotinib showed strong inhibition of c-Met and 

ALK out of a panel of 120 kinases, although it is not clear whether these included LTK 

(24). In a cell proliferation assay TAE684 proved highly selective, being at least 100-

fold more effective against ALK than against 20 other kinases tested (13), although the 

kinase panel tested did not include LTK. Specificity was higher in cellular assays than 

in direct enzymatic assays, and modelling suggested that part, but not all, of the 

specificity depended upon the bulk of the amino acid residue at position 258; we note 

that ALK and LTK in both human and zebrafish all have a conserved eu258 residue 

(Supp. Figure 1). Biochemical profiling of both TAE684 and Crizotinib showed very 

similar strength of competitive binding of these compounds to both ALK and LTK as 

measured by Ambit Bioscience KinomeScanTM profiling, although the interaction 

profiles with other kinases in the panels tested were generally distinct  (22, 25)(N. 

Gray, pers. comm.). In addition, TAE684 shows a 50% inhibitory concentration (IC50) 

of 18 nM against LTK using Life Technologies Corporation, SelectScreen® Kinase 

Profiling. Taken together, we considered that activity of TAE684 and Crizotinib against 

the zebrafish Ltk, in addition to ALK, in vivo was likely. Ltk loss-of-function mutants 

show graded degrees of iridophore number decrease (16, 26). In our treatment of wild-

type embryos with TAE684  we noticed that embryos frequently phenocopied  ltk 

mutant embryos (Figure 3e). Likewise, embryos treated with TAE684 and the NPM-

ALK plasmid rarely showed the clean loss of the NPM-ALK-dependent iridophores 

alone, but instead usually showed a dramatic decrease in all iridophores (Figure 3d,e). 

Interestingly, the degree of iridophore decrease was dose-dependent (Supp. Figure 

2a-d’), clearly phenocopying the allelic series of ltk mutant alleles (16). Similar 

observations were made with Crizotinib-treated embryos (Supp. Figure 2e; data not 

shown). Again, we saw sensitisation of this screen by low-dose treatment with the MEK 

inhibitor PD0325901 (Supp. Figure 2e). We hypothesised that, in addition to inhibition 

of the NPM-ALK protein, both Crizotinib and TAE684 were also inhibiting endogenous 

Ltk activity.  
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To test more directly whether TAE684 might inhibit Ltk kinase activity in our in vivo 

context, we asked whether TAE684-treatment prevented the supernumerary/ectopic 

iridophores induced by injection of psox10:NPM-Ltk. As predicted, we saw that TAE684 

inhibited formation of ectopic iridophores, and that this effect was often combined with 

loss of the endogenous cells (Figure 4). We conclude that TAE684 shows significant in 

vivo activity as an Ltk inhibitor, and that this is highly likely for Crizotinib too. 

 

Specificity of RTK inhibitor phenotypes in vivo. While both TAE684 and Crizotinib 

show specific inhibition of exogenous ALK and endogenous and exogenous Ltk, the in 

vivo phenotypes are consistent with them not affecting other RTKs. For example, we 

never observed effects on other neural crest-derived pigment cells, including 

melanocytes, in TAE684 or Crizotinib-treated embryos. This is notable since mutations 

in the RTK Kit result in a prominent decrease in melanocyte numbers, a phenotype that 

is phenocopied by treatment of embryos with PDGFR/Kit tyrosine kinase inhibitor IV [5] 

(Figure 1; Supp. Figure 3a-a’’; (26, 27). Thus, in vivo, TAE684 and Crizotinib appear 

to show no activity at these doses against Kit, consistent with the findings in cell 

proliferation studies (13).  

Conversely, we do not generally observe strong iridophore phenotypes with inhibitors 

directed against other RTKs. For example, treatment of wild-type embryos with the 

PDGFR/Kit inhibitor did not affect iridophores at doses that phenocopied the Kit mutant 

phenotype (data not shown). At higher doses, there were additional severe defects in 

eye and body morphology, consistent with off-target effects (Supp. Figure 3a’, a’’). 

Our results with the VEGFR inhibitor, Vatalanib (also known as PTK787/ZK222584) 

[4](Figure 1), were particularly interesting. Inhibition of VEGF-R using Vatalanib results 

in defective growth of blood vessels (28). We were able to reproduce these findings 

using doses of even just 1.25 uM, but did not see consistent reduction in iridophores at 
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this dose (Supp. Figure 3b). This inhibitor is reported to show some activity against 

ALK (29), and thus may also be expected to target LTK too, which likely explains why 

we do see an effect on iridophore numbers at higher doses (Supp. Figure 3b).  

In our dose-response experiment (Supp. Figure 2) we observed shortening of the 

body axis at 6 µM, and embryonic lethality at 10 µM, suggesting that higher doses 

induced substantial off-target effects. Nevertheless, the specific inhibition of iridophore 

phenotypes occurred cleanly at lower doses. We conclude that our iridophore assay is 

specific to ALK and Ltk activity, and effects of drug treatment on other targets often 

result in detectable, but distinct, phenotypes. 

Conclusion 

 We have developed the zebrafish system as a simple and effective assay for 

ALK inhibition in vivo. We use iridophore number as a direct functional readout of 

oncogenic ALK activity, allowing a simple visual screen for chemical inhibitors of that 

activity. We show that inhibition of oncogenic ALK can be distinguished from effects on 

even the very closely-related Ltk (comparing supernumerary versus endogenous 

iridophore numbers).  

 We also show that Ltk iridophore activity is sensitive to TAE684 (and likely 

Crizotinib), providing a parallel assay to assess Ltk activity based on screening wild-

type embryos for reduction of iridophores. Such a screen may be useful in the 

identification of drug-leads against LTK, which may have application in treatment of 

systemic lupus erythematosis (30). Such a screen might also identify additional ALK 

inhibitors, however the ALK inhibitor assay described here has the advantages of 

directly assessing inhibition of the human oncogenic protein and of being straight-

forward to adapt to other oncogenic ALK variants, including activating point mutations 

such as are found in Inflammatory myoblastic tumour and neuroblastoma (9, 10, 15). 

We note also that our data indicates that use of low doses of MEK inhibitor PD0325901 
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provides a sensitised ALK inhibitor screen which may be advantageous when 

searching for novel lead compounds. 

 One limitation of the current assay is the mosaicism due to the transient 

transgenic nature of the embryos used. Further refinement of our assay using 

conditionally-expressing transgenic lines (31) to allow us to ensure that all embryos 

express the transgene in all neural crest cells without constitutive lethality would 

substantially improve assay efficiency, and would facilitate the screening of large 

numbers of molecules. Iridophores are auto-fluorescent and combined with recent 

advances in high-throughput microscopy (32), our assay can be readily adapted to an 

automated, quantitative assessment of in vivo ALK kinase activity. Zebrafish are 

increasingly popular for medium-large scale drug screens, where the embryos’ small 

size, optical clarity, external development in aqueous medium, and ease of genetic 

manipulation to make transgenic reporter lines, make them ideally suited (33, 34).  

 In summary, we believe that our assay is unique in combining several powerful 

features in an in vivo context including: 1) quantitative readout of functional activity of 

ALK mutations; 2) sensitive detection of off-target effects; 3) potential for automation 

for high-throughput; 4) suitability for screening for genetic and chemical suppressor 

mutations, and for 5) testing combination therapies on resistant ALK mutations. Given 

the significant animal welfare and cost advantages of using zebrafish embryos, our 

assay system offers substantial opportunities for early assessment of in vivo efficacy 

and specificity of lead molecules in the drug development pipeline. These assays might 

even be further adapted for other RTKs, thus offering even greater utility as a drug 

development tool. 

Methods 

Full details of methods used are provided in the supplementary material that 

accompanies this paper online. 
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Figure legends 

Figure 1 Structures of receptor tyrosine kinase inhibitors used in this study. [1] 

Crizotinib; [2] TAE684; [3], PD0325901; [4] Vatalanib; [5] PDGFR/Kit tyrosine kinase 

inhibitor IV. 

Figure 2 NPM-ALK and NPM-Ltk expression drives iridophore development. a) 

Schematic of experiment.  Note that the sox10 promoter fragment used in this 

construct has been shown to drive expression in neural crest (20), so that these 

transiently transgenic embryos are expected to express the activated ALK or Ltk kinase 

in a tissue-specific, but mosaic, manner. b-e) Injection of 230 pg of psox10:NPM-ALK  

into wild-type (c) or ltkty82 mutants (e) increases iridophore numbers compared with 

uninjected controls (b,d). Iridophores are the prominent silver-gold spots, seen either 

as individual cells (yellow arrowheads in b), or as clusters (e.g. on surface of eye (e) in 

b). In wild-types, expression generates supernumerary (arrows) and ectopic 

(arrowheads) iridophores, whereas in ltk mutants iridophore development is rescued, 

often forming large clusters (arrows). f-i) Analogous experiment using psox10:NPM-Ltk  

gave very similar phenotypes. All fish photographed at 5 dpf. NB Fish in panels b-e 

have been treated with phenylthiourea and hence lack melanin. Here and in all 

subsequent figures, embryos are shown dorsal up, and anterior to left. Scale bar, 200 

µm. 
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Figure 3 TAE684 inhibits NPM-ALK in vivo and reduces endogenous iridophores. Wild-

type embryos were injected with 50 pg of psox10:NPM-ALK and treated with 2 µM of 

TAE684 ALK inhibitor or DMSO control. a) Schematic of experiment in Figure 3 and 

Figure 4. b-d) Incident light images at 3 dpf of control uninjected, non-treated embryo 

(b), NPM-ALK injected DMSO-treated sibling (c) and NPM-ALK injected TAE684-

treated siblings (d). Injected embryos (c) have ectopic (arrowheads) and 

supernumerary (arrows) iridophores when compared to the uninjected control (b). 

Injected embryo treated with TAE684 has fewer iridophores than controls in eyes and 

trunk (asterisks) and no ectopic iridophores or large clusters (d). Ratios of embryos 

with normal, ectopic/supernumerary and decreased iridophore numbers are quantitated 

in e). Differences between treatments are significant (Freeman-Halton extension of 

Fisher exact probability test, p values shown); numbers treated (n) in each category 

shown below each column. f) Iridophore number in dorsal stripe position after 

treatment with Crizotinib and/or MEK inihibitor PD0325901 (PD0325). Comparisons 

assessed using Fisher’s exact probability test. Note that Crizotinib treatment results in 

significant decrease in ectopic/supernumerary iridophore number compared with 

controls, and that a low dose (500 nM) of PD0325901 (ineffective on its own) sensitises 

for the Crizotinib effect. Scale bar, 200 µm. 

 

Figure 4 TAE684 inhibits NPM-Ltk. Wild-type embryos were injected with 30 pg of 

psox10:NPM-Ltk and treated with 3 µM of TAE684 (for schematic see Figure 3). 

Incident light images (a-c) at 3 dpf of control uninjected, non-treated embryo (a), NPM-

Ltk injected, DMSO-treated sibling (b) and NPM-Ltk injected TAE684-treated siblings 

(c). Injected embryos (b) have ectopic (arrowheads) and supernumerary iridophores 

(arrows) when compared to the uninjected control (a). Injected, TAE684-treated 

embryos have fewer iridophores than control in eyes and trunk and no ectopic 

iridophores or large clusters (c). Ratios of embryos with different phenotypes are 
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quantitated in d), as in Figure 3e); differences between treatments are significant 

(Freeman-Halton extension of Fisher exact probability test, p values shown). Scale bar, 

500 µm. 
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