306 research outputs found

    Unimodular metagravity vs. General Relativity with a scalar field

    Full text link
    The unimodular metagravity, with the graviscalar as a dark matter, is compared with General Relativity (GR) in the presence of a scalar field. The effect of the graviscalar on the static spherically symmetric metric is studied. An exact limit solution representing a new cosmic object, the (harmonic) graviscalar black hole, is given. The relation with the black hole in the environment of a scalar field in GR is discussed.Comment: 7 pages. Report presented at the RAS Conference "Physics of Fundamental Interactions", Protvino, December 22-25, 200

    Molecular line and continuum study of the W40 cloud

    Get PDF
    The dense cloud associated with W40, one of the nearby H II regions, has been studied in millimeter-wave molecular lines and in 1.2 mm continuum. Besides, 1280 MHz and 610 MHz interferometric observations have been done. The cloud has complex morphological and kinematical structure, including a clumpy dust ring and an extended dense core. The ring is probably formed by the "collect and collapse" process due to the expansion of neighboring H II region. Nine dust clumps in the ring have been deconvolved. Their sizes, masses and peak hydrogen column densities are: 0.020.11\sim 0.02-0.11 pc, 0.48.1M\sim 0.4-8.1 M_{\odot} and (2.511)×1022\sim (2.5-11)\times 10^{22} cm2^{-2}, respectively. Molecular lines are observed at two different velocities and have different spatial distributions implying strong chemical differentiation over the region. The CS abundance is enhanced towards the eastern dust clump 2, while the NH3_3, N2_2H+^+, and H13^{13}CO+^+ abundances are enhanced towards the western clumps. HCN and HCO+^+ do not correlate with the dust probably tracing the surrounding gas. Number densities derived towards selected positions are: (0.33.2)×106\sim (0.3-3.2)\times 10^6 cm3^{-3}. Two western clumps have kinetic temperatures 21 K and 16 K and are close to virial equilibrium. The eastern clumps 2 and 3 are more massive, have higher extent of turbulence and are probably more evolved than the western ones. They show asymmetric CS(2--1) line profiles due to infalling motions which is confirmed by model calculations. An interaction between ionized and neutral material is taking place in the vicinity of the eastern branch of the ring and probably trigger star formation.Comment: 16 pages, 6 figure

    Markov Process of Muscle Motors

    Full text link
    We study a Markov random process describing a muscle molecular motor behavior. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spend an exponential time depending on the state. The thin filament moves at its velocity proportional to average of all displacements of all motors. We assume that the time which a motor stays at the bound state does not depend on its displacement. Then one can find an exact solution of a non-linear equation appearing in the limit of infinite number of the motors.Comment: 10 page

    On Spin Systems with Quenched Randomness: Classical and Quantum

    Full text link
    The rounding of first order phase transitions by quenched randomness is stated in a form which is applicable to both classical and quantum systems: The free energy, as well as the ground state energy, of a spin system on a dd-dimensional lattice is continuously differentiable with respect to any parameter in the Hamiltonian to which some randomness has been added when d2d \leq 2. This implies absence of jumps in the associated order parameter, e.g., the magnetization in case of a random magnetic field. A similar result applies in cases of continuous symmetry breaking for d4d \leq 4. Some questions concerning the behavior of related order parameters in such random systems are discussed.Comment: 8 pages LaTeX, 2 PDF figures. Presented by JLL at the symposium "Trajectories and Friends" in honor of Nihat Berker, MIT, October 200

    W40 region in the Gould Belt : An embedded cluster and H II region at the junction of filaments

    Full text link
    We present a multiwavelength study of W40 star-forming region using IR observations in UKIRT JHK bands, Spitzer IRAC bands & Herschel PACS bands; 2.12 micron H2 narrow-band imaging; & radio observations from GMRT (610 & 1280 MHz), in a FoV of ~34'x40'. Spitzer observations along with NIR observations are used to identify 1162 Class II/III & 40 Class I sources in the FoV. The NN stellar surface density analysis shows that majority of these YSOs constitute the embedded cluster centered on the source IRS1A South. Some YSOs, predominantly younger population, are distributed along & trace the filamentary structures at lower stellar surface density. The cluster radius is obtained as 0.44pc - matching well with the extent of radio emission - with a peak density of 650pc^-2. The JHK data is used to map the extinction which is subsequently used to compute the cloud mass. It has resulted in 126 Msun & 71 Msun for the central cluster & the northern IRS5 region, respectively. H2 narrow-band imaging displays significant emission, which prominently resembles fluorescent emission arising at the borders of dense regions. Radio analysis shows this region as having blister morphology, with the radio peak coinciding with a protostellar source. Free-free emission SED analysis is used to obtain physical parameters of the overall region & the IRS5 sub-region. This multiwavelength scenario is suggestive of star formation having resulted from merging of multiple filaments to form a hub. Star formation seems to have taken place in two successive epochs, with the first epoch traced by the central cluster & the high-mass star(s) - followed by a second epoch which is spreading into the filaments as uncovered by the Class I sources & even younger protostellar sources along the filaments. The IRS5 HII region displays indications of swept-up material which has possibly led to the formation of protostars.Comment: 17 pages, 12 figures, 2 tables. Accepted for publication in The Astrophysical Journa

    Multi-frequency Studies of Massive Cores with Complex Spatial and Kinematic Structures

    Get PDF
    Five regions of massive star formation have been observed in various molecular lines in the frequency range 8589\sim 85-89 GHz. The studied regions possess dense cores, which host young stellar objects. The physical parameters of the cores are estimated, including kinetic temperatures (2040\sim 20-40 K), sizes of the emitting regions (0.10.6\sim 0.1-0.6 pc), and virial masses (40500M\sim 40-500 M_{\odot}). Column densities and abundances of various molecules are calculated in the local thermodynamical equilibrium approximation. The core in 99.982+4.17, associated with the weakest IRAS source, is characterized by reduced molecular abundances. Molecular line widths decrease with increasing distance from the core centers (bb). For b\ga 0.1~pc, the dependences ΔV(b)\Delta V(b) are close to power laws (bp\propto b^{-p}), where pp varies from 0.2\sim 0.2 to 0.5\sim 0.5, depending on the object. In four cores, the asymmetries of the optically thick HCN(1--0) and HCO+^+(1--0) lines indicate systematic motions along the line of sight: collapse in two cores and expansion in two others. Approximate estimates of the accretion rates in the collapsing cores indicate that the forming stars have masses exceeding the solar mass.Comment: 18 pages, 7 figures, 6 table

    A Search for Small-Scale Clumpiness in Dense Cores of Molecular Clouds

    Full text link
    We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high signal-to-noise ratios toward distinct positions in three selected objects in order to search for small-scale structure in molecular cloud cores associated with regions of high-mass star formation. In some cases, ripples were detected in the line profiles, which could be due to the presence of a large number of unresolved small clumps in the telescope beam. The number of clumps for regions with linear scales of ~0.2-0.5 pc is determined using an analytical model and detailed calculations for a clumpy cloud model; this number varies in the range: ~2 10^4-3 10^5, depending on the source. The clump densities range from ~3 10^5-10^6 cm^{-3}, and the sizes and volume filling factors of the clumps are ~(1-3) 10^{-3} pc and ~0.03-0.12. The clumps are surrounded by inter-clump gas with densities not lower than ~(2-7) 10^4 cm^{-3}. The internal thermal energy of the gas in the model clumps is much higher than their gravitational energy. Their mean lifetimes can depend on the inter-clump collisional rates, and vary in the range ~10^4-10^5 yr. These structures are probably connected with density fluctuations due to turbulence in high-mass star-forming regions.Comment: 23 pages including 4 figures and 4 table

    Chemical differentiation in regions of high-mass star formation I. CS, dust and N2H^+ in southern sources

    Get PDF
    Aims. Our goals are to compare the CS, N2H+ and dust distributions in a representative sample of high-mass star forming dense cores and to determine the physical and chemical properties of these cores. Methods. We compare the results of CS(5-4) and 1.2 mm continuum mapping of twelve dense cores from the southern hemisphere presented in this work, in combination with our previous N2H+(1-0) and CS(2-1) data. We use numerical modeling of molecular excitation to estimate physical parameters of the cores. Results. Most of the maps have several emission peaks (clumps). We derive basic physical parameters of the clumps and estimate CS and N2H+ abundances. Masses calculated from LVG densities are higher than CS virial masses and masses derived from continuum data, implying small-scale clumpiness of the cores. For most of the objects, the CS and continuum peaks are close to the IRAS point source positions. The CS(5-4) intensities correlate with continuum fluxes per beam in all cases, but only in five cases with the N2H+(1-0) intensities. The study of spatial variations of molecular integrated intensity ratios to continuum fluxes reveals that I(N2H+)/F{1.2} ratios drop towards the CS peaks for most of the sources, which can be due to a N2H+ abundance decrease. For CS(5-4), the I(CS)/F{1.2} ratios show no clear trends with distance from the CS peaks, while for CS(2-1) such ratios drop towards these peaks. Possible explanations of these results are considered. The analysis of normalized velocity differences between CS and N2H+ lines has not revealed indications of systematic motions towards CS peaks.Comment: 13 pages, 5 figures, accepted by Astronomy and Astrophysic
    corecore