964 research outputs found

    Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa

    Get PDF
    Correction: Volume: 23 Issue: 9 DOI: 10.1038/mp.2017.202 Published: SEP 2018Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P = 9.89 x 10(-6)), and rs7700147, an intergenic variant (P = 2.93 x 10(-5)). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes.Peer reviewe

    Apolipoprotein E4 Polymorphism and Outcomes from Traumatic Brain Injury : A Living Systematic Review and Meta-Analysis

    Get PDF
    The mortality of traumatic brain injury (TBI) has been largely static despite advances in monitoring and imaging techniques. Substantial variance exists in outcome, not fully accounted for by baseline characteristics or injury severity, and genetic factors likely play a role in this variance. The aims of this systematic review were to examine the evidence for a link between the apolipoprotein E4 (APOE4) polymorphism and TBI outcomes and where possible, to quantify the effect size via meta-analysis. We searched EMBASE, MEDLINE, CINAHL, and gray literature in December 2017. We included studies of APOE genotype in relation to functional adult TBI outcomes. Methodological quality was assessed using the Quality in Prognostic Studies Risk of Bias Assessment Instrument and the prognostic studies adaptation of the Grading of Recommendations Assessment, Development and Evaluation tool. In addition, we contacted investigators and included an additional 160 patients whose data had not been made available for previous analyses, giving a total sample size of 2593 patients. Meta-analysis demonstrated higher odds of a favorable outcome following TBI in those not possessing an ApoE e4 allele compared with e4 carriers and homozygotes (odds ratio 1.39, 95% confidence interval 1.05 to 1.84; p = 0.02). The influence of APOE4 on neuropsychological functioning following TBI remained uncertain, with multiple conflicting studies. We conclude that the ApoE e4 allele confers a small risk of poor outcome following TBI, with analysis by TBI severity not possible based on the currently available published data. Further research into the long-term neuropsychological impact and risk of dementia is warranted.Peer reviewe

    Genetic Influences on Patient-Oriented Outcomes in Traumatic Brain Injury : A Living Systematic Review of Non-Apolipoprotein E Single-Nucleotide Polymorphisms

    Get PDF
    There is a growing literature on the impact of genetic variation on outcome in traumatic brain injury (TBI). Whereas a substantial proportion of these publications have focused on the apolipoprotein E (APOE) gene, several have explored the influence of other polymorphisms. We undertook a systematic review of the impact of single-nucleotide polymorphisms (SNPs) in non-apolipoprotein E (non-APOE) genes associated with patient outcomes in adult TBI). We searched EMBASE, MEDLINE, CINAHL, and gray literature from inception to the beginning of August 2017 for studies of genetic variance in relation to patient outcomes in adult TBI. Sixty-eight articles were deemed eligible for inclusion into the systematic review. The SNPs described were in the following categories: neurotransmitter (NT) in 23, cytokine in nine, brain-derived neurotrophic factor (BDNF) in 12, mitochondrial genes in three, and miscellaneous SNPs in 21. All studies were based on small patient cohorts and suffered from potential bias. A range of SNPs associated with genes coding for monoamine NTs, BDNF, cytokines, and mitochondrial proteins have been reported to be associated with variation in global, neuropsychiatric, and behavioral outcomes. An analysis of the tissue, cellular, and subcellular location of the genes that harbored the SNPs studied showed that they could be clustered into blood-brain barrier associated, neuroprotective/regulatory, and neuropsychiatric/degenerative groups. Several small studies report that various NT, cytokine, and BDNF-related SNPs are associated with variations in global outcome at 6-12 months post-TBI. The association of these SNPs with neuropsychiatric and behavioral outcomes is less clear. A definitive assessment of role and effect size of genetic variation in these genes on outcome remains uncertain, but could be clarified by an adequately powered genome-wide association study with appropriate recording of outcomes.Peer reviewe

    Independent and cumulative coeliac disease-susceptibility loci are associated with distinct disease phenotypes

    Get PDF
    The phenotype of coeliac disease varies considerably for incompletely understood reasons. We investigated whether established coeliac disease susceptibility variants (SNPs) are individually or cumulatively associated with distinct phenotypes. We also tested whether a polygenic risk score (PRS) based on genome-wide associated (GWA) data could explain the phenotypic variation. The phenotypic association of 39 non-HLA coeliac disease SNPs was tested in 625 thoroughly phenotyped coeliac disease patients and 1817 controls. To assess their cumulative effects a weighted genetic risk score (wGRS39) was built, and stratified by tertiles. In our PRS model in cases, we took the summary statistics from the largest GWA study in coeliac disease and tested their association at eight P value thresholds (P-T) with phenotypes. Altogether ten SNPs were associated with distinct phenotypes after correction for multiple testing (P-EMP2 1.62 for having coeliac disease-related symptoms during childhood, a more severe small bowel mucosal damage, malabsorption and anaemia. PRS was associated only with dermatitis herpetiformis (P-T = 0.2, P-EMP2 = 0.02). Independent coeliac disease-susceptibility loci are associated with distinct phenotypes, suggesting that genetic factors play a role in determining the disease presentation. Moreover, the increased number of coeliac disease susceptibility SNPs might predispose to a more severe disease course.Peer reviewe

    A structural variation reference for medical and population genetics

    Get PDF
    Structural variants (SVs) rearrange large segments of DNA(1) and can have profound consequences in evolution and human disease(2,3). As national biobanks, disease-association studies, and clinical genetic testing have grown increasingly reliant on genome sequencing, population references such as the Genome Aggregation Database (gnomAD)(4) have become integral in the interpretation of single-nucleotide variants (SNVs)(5). However, there are no reference maps of SVs from high-coverage genome sequencing comparable to those for SNVs. Here we present a reference of sequence-resolved SVs constructed from 14,891 genomes across diverse global populations (54% non-European) in gnomAD. We discovered a rich and complex landscape of 433,371 SVs, from which we estimate that SVs are responsible for 25-29% of all rare protein-truncating events per genome. We found strong correlations between natural selection against damaging SNVs and rare SVs that disrupt or duplicate protein-coding sequence, which suggests that genes that are highly intolerant to loss-of-function are also sensitive to increased dosage(6). We also uncovered modest selection against noncoding SVs in cis-regulatory elements, although selection against protein-truncating SVs was stronger than all noncoding effects. Finally, we identified very large (over one megabase), rare SVs in 3.9% of samples, and estimate that 0.13% of individuals may carry an SV that meets the existing criteria for clinically important incidental findings(7). This SV resource is freely distributed via the gnomAD browser(8) and will have broad utility in population genetics, disease-association studies, and diagnostic screening.Peer reviewe

    A genome-wide association scan on estrogen receptor-negative breast cancer

    Get PDF
    Introduction: Breast cancer is a heterogeneous disease and may be characterized on the basis of whether estrogen receptors (ER) are expressed in the tumour cells. ER status of breast cancer is important clinically, and is used both as a prognostic indicator and treatment predictor. In this study, we focused on identifying genetic markers associated with ER-negative breast cancer risk.Methods: We conducted a genome-wide association analysis of 285,984 single nucleotide polymorphisms (SNPs) genotyped in 617 ER-negative breast cancer cases and 4,583 controls. We also conducted a genome-wide pathway analysis on the discovery dataset using permutation-based tests on pre-defined pathways. The extent of shared polygenic variation between ER-negative and ER-positive breast cancers was assessed by relating risk scores, derived using ER-positive breast cancer samples, to disease state in independent, ER-negative breast cancer cases.Results: Association with ER-negative breast cancer was not validated for any of the five most strongly associated SNPs followed up in independent studies (1,011 ER-negative breast cancer cases, 7,604 controls). However, an excess of small P-values for SNPs with known regulatory functions in cancer-related pathways was found (global P = 0.052). We found no evidence to suggest that ER-negative breast cancer share

    Polygenic burden in focal and generalized epilepsies.

    Get PDF
    Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64×10-15; Cleveland: P = 2.85×10-4; Finnish-ancestry Epi25: P = 1.80×10-4) or population controls (Epi25: P = 2.35×10-70; Cleveland: P = 1.43×10-7; Finnish-ancestry Epi25: P = 3.11×10-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99×10-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74×10-19; Cleveland: P = 1.69×10-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60×10-15; Cleveland: P = 1.39×10-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment
    corecore