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Structural variants (SVs) rearrange large segments of DNA1 and can have profound 
consequences in evolution and human disease2,3. As national biobanks, 
disease-association studies, and clinical genetic testing have grown increasingly 
reliant on genome sequencing, population references such as the Genome 
Aggregation Database (gnomAD)4 have become integral in the interpretation of 
single-nucleotide variants (SNVs)5. However, there are no reference maps of SVs from 
high-coverage genome sequencing comparable to those for SNVs. Here we present a 
reference of sequence-resolved SVs constructed from 14,891 genomes across diverse 
global populations (54% non-European) in gnomAD. We discovered a rich and 
complex landscape of 433,371 SVs, from which we estimate that SVs are responsible 
for 25–29% of all rare protein-truncating events per genome. We found strong 
correlations between natural selection against damaging SNVs and rare SVs that 
disrupt or duplicate protein-coding sequence, which suggests that genes that are 
highly intolerant to loss-of-function are also sensitive to increased dosage6. We also 
uncovered modest selection against noncoding SVs in cis-regulatory elements, 
although selection against protein-truncating SVs was stronger than all noncoding 
effects. Finally, we identified very large (over one megabase), rare SVs in 3.9% of 
samples, and estimate that 0.13% of individuals may carry an SV that meets the 
existing criteria for clinically important incidental findings7. This SV resource is freely 
distributed via the gnomAD browser8 and will have broad utility in population 
genetics, disease-association studies, and diagnostic screening.

SVs are DNA rearrangements that involve at least 50 nucleotides1.  
By virtue of their size and abundance, SVs represent an important 
mutational force that shape genome evolution and function2,3, and 
contribute to germline and somatic diseases9–11. The profound effect 
of SVs is also attributable to the numerous mechanisms by which they 
can disrupt protein-coding genes and cis-regulatory architecture12. 
SVs can be grouped into mutational classes that include ‘unbalanced’ 
gains or losses of DNA (for example, copy-number variants, CNVs), 
and ‘balanced’ rearrangements that occur without corresponding  
dosage alterations (such as inversions and translocations)1 (Fig. 1a). 
Other common forms of SVs include mobile elements that insert them-
selves throughout the genome, and multiallelic CNVs (MCNVs) that can 

exist at high copy numbers1. More recently, exotic species of complex 
SVs have been discovered that involve two or more distinct SV signa-
tures in a single mutational event interleaved on the same allele, and 
can range from CNV-flanked inversions to rare instances of localized 
chromosome shattering, such as chromothripsis13,14. The diversity of 
SVs in humans is therefore far greater than has been widely appreciated, 
as is their influence on genome structure and function.

Although SVs alter more nucleotides per genome than SNVs and 
short insertion/deletion variants (indels; <50 bp)1, surprisingly little 
is known about their mutational spectra on a global scale. The largest 
published population study of SVs using whole-genome sequencing 
(WGS) remains the 1000 Genomes Project (n = 2,504; 7× sequence 
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coverage)1, and the substantial technical challenges of SV discovery 
from WGS15 has led to non-uniform SV analyses across contemporary 
studies16–20. Moreover, short-read WGS is unable to capture a sub-
set of SVs accessible to more expensive niche technologies, such as 
long-read WGS21. Owing to the combination of these challenges, SV 
references are dwarfed by contemporary resources for short variants, 
such as the Exome Aggregation Consortium (ExAC) and its successor, 
the Genome Aggregation Database (gnomAD), which have jointly ana-
lysed more than 140,000 individuals4,6. Publicly available resources 
such as ExAC and gnomAD have transformed many aspects of human 
genetics, including defining sets of genes constrained against dam-
aging coding mutations6 and providing frequency filters for variant 
interpretation5. As short-read WGS is rapidly becoming the predomi-
nant technology in large-scale human disease studies, and will prob-
ably displace conventional methods for diagnostic screening, there 
is a mounting need for comparable references of SVs across global 
populations.

In this study, we developed gnomAD-SV, a sequence-resolved refer-
ence for SVs from 14,891 genomes. Our analyses revealed diverse muta-
tional patterns among SVs, and principles of selection acting against 
reciprocal dosage changes in genes and noncoding cis-regulatory 

elements. From these analyses, we determined that SVs represent more 
than 25% of all rare protein-truncating events per genome, emphasizing 
the unrealized potential of routine SV detection in WGS studies. This 
SV reference has been integrated into the gnomAD browser (http://
gnomad.broadinstitute.org) with no restrictions on reuse so that it 
can be mined for new insights into genome biology and applied as a 
resource to interpret SVs in diagnostic screening.

SV discovery and genotyping
We analysed WGS data for 14,891 samples (average coverage of 32×) 
aggregated from large-scale sequencing projects, of which 14,237 
(95.6%) passed all quality thresholds, representing a general adult popu-
lation depleted for severe Mendelian diseases (median age of 49 years) 
(Supplementary Table 1, Supplementary Figs. 1, 2). This cohort included 
46.1% European, 34.9% African or African American, 9.2% East Asian, 
and 8.7% Latino samples, as well as 1.2% samples from admixed or other 
populations (Fig. 1). Following family-based analyses using 970 parent–
child trios for quality assessments, we pruned all first-degree relatives 
from the cohort, retaining 12,653 unrelated genomes for subsequent 
analyses.

We discovered and genotyped SVs using a cloud-based, 
multi-algorithm pipeline for short-read WGS (Supplementary Fig. 3), 
which we prototyped in a study of 519 autism quartet families20. This 
pipeline integrated four orthogonal evidence types to capture SVs 
across the size and allele frequency spectra, including six classes of 
canonical SVs (Fig. 1a) and 11 subclasses of complex SVs22 (Fig. 2). We 
augmented this pipeline with new methods to account for the technical 
heterogeneity of aggregated datasets (Extended Data Fig. 1, Supple-
mentary Figs. 4, 5), and discovered 433,371 SVs (Fig. 1c). After exclud-
ing low-quality SVs, which were predominantly (61.6%) composed of 
incompletely resolved breakpoint junctions (that is, ‘breakends’) that 
lack interpretable alternative allele structures for functional annota-
tion and produce high false-discovery rates20 (Extended Data Fig. 2a), 
we retained 335,470 high-quality SVs for subsequent analyses (Sup-
plementary Table 3). This final set of high-quality SVs corresponded 
to a median of 7,439 SVs per genome, or more than twice the number 
of variants per genome captured by previous WGS-based SV stud-
ies such as the 1000 Genomes Project (3,441 SVs per genome from 
approximately 7× coverage WGS), which underscores the benefits of 
high-coverage WGS and improved multi-algorithm ensemble methods 
for SV discovery.

Given that there are no gold-standard benchmarking procedures 
for SVs from WGS, we evaluated the technical qualities of gnomAD-SV 
using seven orthogonal approaches. These analyses are described in 
detail in Extended Data Figs. 2, 3, Supplementary Figs. 6–12, Supple-
mentary Table 4 and Supplementary Note 1, but we highlight just a few 
here to demonstrate that gnomAD-SV conforms to many fundamental 
principles of population genetics, including Mendelian segregation, 
genotype distributions, and linkage disequilibrium. We found that the 
precision of gnomAD-SV was comparable to our previous study of 519 
autism quartets that attained a 97% molecular validation rate for all 
de novo SV predictions20: in gnomAD, analyses of 970 parent–child 
trios indicated a median Mendelian violation rate of 3.8% and a het-
erozygous de novo rate of 3.0%. We also observed that 86% of SVs were 
in Hardy–Weinberg equilibrium, and common SVs were in strong linkage 
disequilibrium with nearby SNVs or indels (median peak R2 = 0.85). We 
performed extensive in silico confirmation of 19,316 SVs predicted from 
short-read WGS using matched long-read WGS from four samples21,23, 
finding a 94.0% confirmation rate with breakpoint-level read evidence, 
and revealing that 59.8% of breakpoint coordinates were accurate within 
a single nucleotide of the long-read data. These and other benchmark-
ing approaches suggested that gnomAD-SV was sufficiently sensitive 
and specific to be used as a reference dataset for most applications in 
human genomics.
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Fig. 1 | Properties of SVs across human populations. a, SV classes catalogued 
in this study. We also documented unresolved non-reference ‘breakends’ 
(BNDs), but they were excluded from all analyses as low-quality variants.  
b, After quality control, we analysed 14,237 samples across continental 
populations, including African/African American (AFR), Latino (AMR), East 
Asian (EAS), and European (EUR), or other populations (OTH). Three publicly 
available WGS-based SV datasets are provided for comparison (1000 Genomes 
Project (1000G), approximately 7× coverage; Genome of the Netherlands 
Project (GoNL), around 13× coverage; Genotype-Tissue Expression Project 
(GTEx), approximately 50× coverage)1,16,17. c, We discovered 433,371 SVs, and 
provide counts from previous studies for comparison1,16,17. d, A principal 
component (PC) analysis of genotypes for 15,395 common SVs separated 
samples along axes corresponding to genetic ancestry. e, The median genome 
contained 7,439 SVs. f, Most SVs were small. Expected Alu, SVA and LINE1 
mobile element insertion peaks are marked at approximately 300 bp, 2.1 kb and 
6 kb, respectively. g, Most SVs were rare (allele frequency (AF) < 1%), and 49.8% 
of SVs were singletons (solid bars). h, Allele frequencies were inversely 
correlated with SV size across all 335,470 resolved SVs in unrelated individuals. 
Values are mean and 95% confidence interval from 100-fold bootstrapping. 
Colour codes are consistent between a, c, e–h, and between b and d.
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The distribution of SVs across samples matched expectations based 
on human demographic history, with the top three components of 
genetic variance separating continental populations (Fig. 1d, Sup-
plementary Fig. 13). African and African American samples exhibited 
the greatest genetic diversity and their common SVs were in weaker 
linkage disequilibrium with nearby short variants than Europeans, 
whereas East Asians featured the highest levels of homozygosity 
(Fig. 1e, Extended Data Fig. 4a–d, Supplementary Fig. 7). The muta-
tional diversity of gnomAD-SV was extensive: we completely resolved 
5,295 complex SVs across 11 mutational subclasses, of which 3,901 
(73.7%) involved inverted segments (Fig. 2), confirming that inversion 
variation is predominantly composed of complex SVs rather than 
canonical inversions1,24. Across all SV classes, most SVs were small 
(median size of 331 bp) and rare (allele frequency < 1%; 92% of SVs), 
with half of all SVs (49.8%) appearing as ‘singletons’ (that is, only one 
allele observed across all samples) (Fig. 1f, g). Although the proportion 
of singletons varied by SV class, it was strongly dependent on SV size 
across all classes, which suggests that the amount of DNA rearranged 
is a key determinant of selection against most SVs (Fig. 1h, Extended 
Data Fig. 5a).

Mutation rate estimates for SVs have remained elusive owing to 
limited sample sizes, poor resolution of conventional technologies, 
technical challenges of SV discovery, and use of cell line-derived DNA 
in population studies1,25. Here, we used the Watterson estimator26 to 
project a mean mutation rate of 0.29 de novo SVs (95% confidence inter-
val 0.13–0.44) per generation in regions of the genome accessible to 
short-read WGS, or roughly one new SV every 2–8 live births, with muta-
tion rates varying markedly by SV class (Fig. 3a). Although this imperfect 
method extrapolates from data pooled across unrelated individuals, we 
previously demonstrated comparable rates from molecularly validated 
observations in 519 quartet families20. Like mutation rates, the distri-
bution of SVs throughout the genome was non-uniform, significantly 
correlated with repetitive sequence contexts, and was enriched near 
centromeres and telomeres23 (Supplementary Fig. 16). These trends 
were dependent on SV class, as biallelic deletions and duplications were 
predominantly enriched at telomeres, whereas MCNVs were enriched 
in centromeric segmental duplications (Fig. 3b–d). Given the reduced 
sensitivity of short-read WGS in repetitive sequences, this study cer-
tainly underestimates the true SV mutation rates; nevertheless, these 

analyses implicate several aspects of chromosomal context and SV class 
in determining SV mutation rates throughout the genome.

Dosage sensitivity of coding and noncoding loci
Owing to their size and mutational diversity, SVs can have varied con-
sequences on protein-coding genes12 (Fig. 4a, Supplementary Fig. 17). 
In principle, any SV can result in predicted loss-of-function (pLoF), 
either by deleting coding nucleotides or altering open-reading frames. 
Coding duplications can result in copy-gain of entire genes, or of a 
subset of exons within a gene (referred to here as intragenic exonic 
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duplication, or IED). The average genome in gnomAD-SV contained a 
mean of 179.8 genes altered by biallelic SVs (144.3 pLoF, 24.3 copy-gain, 
and 11.2 IED), of which 11.6 were predicted to be completely inacti-
vated by homozygous pLoF (Fig. 4b, Extended Data Fig. 4e–h). When 
restricted to rare (allele frequency < 1%) SVs, we observed a mean of 
10.2 altered genes per genome (5.5 pLoF, 3.4 copy-gain, and 1.3 IED). 
By comparison, a companion gnomAD paper estimated 122.4 pLoF 
short variants per genome, of which 16.3 were rare4. These analyses 
suggest that 29.4% of rare heterozygous gene inactivation events per 
individual are contributed by SVs, or conservatively 25.2% of pLoF 
events if we exclude IEDs given the context-dependence of their 
functional impact.

A fundamental question in human genetics is the degree to which 
natural selection acts on coding and noncoding loci. The proportion 
of singleton variants has been established as a proxy for strength of 
selection6; however, this metric is confounded for SVs given the strong 
correlation between allele frequency and SV size, among other factors. 
Therefore, we developed a new metric, adjusted proportion of single-
tons (APS), to account for SV class, size, genomic context, and other 
technical covariates (Extended Data Fig. 5, Supplementary Fig. 14). 
Under this normalized APS metric, a value of zero corresponds to a sin-
gleton proportion comparable to intergenic SVs, whereas values greater 
than zero reflect purifying selection, similar to the ‘mutability-adjusted 
proportion of singletons’ (MAPS) metric used for SNVs6. Applying this 
APS model revealed signals of pervasive selection against nearly all 
classes of SVs that overlap genes, including intronic SVs, whole-gene 
inversions, SVs in gene promoters, and deletions as small as a single 
exon (Fig. 4c, Extended Data Fig. 6, Supplementary Fig. 18). The one 
notable exception was copy-gain duplications, which showed no clear 
evidence of selection beyond what could already be explained by their 
sizes, which were vastly larger than non-copy-gain duplications (median 
copy-gain duplication size = 134.8 kb; median non-copy-gain duplica-
tion size = 2.7 kb; one-tailed Wilcoxon test, W = 1.18 × 108, P < 10−100). This 
result could have numerous explanations, but it is consistent with the 
known diverse evolutionary roles of gene duplication events, including 
positive selection reported in humans27,28.

Methods that quantify evolutionary constraint on a per-gene basis, 
such as the probability of intolerance to heterozygous pLoF variation 
(pLI)6 and the pLoF observed/expected upper fraction (LOEUF)4, have 
become core resources in human genetics. Nearly all existing metrics, 
including pLI and LOEUF, are derived from SNVs. Although previous 
studies have attempted to compute similar scores using large CNVs 
detected by microarray and exome sequencing29,30, or to correlate 
deletions with pLI18, no gene-level metrics comparable to LOEUF exist 
for SVs at WGS resolution. To gain insight into this problem, we built 
a model to estimate the depletion of rare SVs per gene compared to 
expectations based on gene length, genomic context, and the structure 
of exons and introns. This model is imperfect, as current sample sizes 
are too sparse to derive precise gene-level metrics of constraint from 
SVs. Nevertheless, we found strong concordance between the deple-
tion of rare pLoF SVs and existing pLoF and missense SNV constraint 
metrics4 (pLoF Spearman correlation test, ρ = 0.90, P < 10−100) (Fig. 4d, 
Supplementary Fig. 19). Notably, a comparable positive correlation was 
also observed for copy-gain SVs and SNV constraint (pLoF Spearman 
correlation test, ρ = 0.78, P < 10−100), whereas a weaker yet significant 
correlation was detected for IEDs (pLoF Spearman correlation test, 
ρ = 0.58, P = 2.0 × 10−11). As orthogonal support for these trends, we 
identified an inverse correlation between APS and SNV constraint 
across all functional categories of SVs, which was consistent with 
our observed depletion of rare, functional SVs in constrained genes 
(Extended Data Fig. 6f). These comparisons confirm that selection 
against most classes of gene-altering SVs mirrors patterns observed 
for short variants18,30. They further suggest that SNV-derived constraint 
metrics such as LOEUF capture a general correspondence between 
haploinsufficiency and triplosensitivity for a large fraction of genes in 

the genome. It therefore appears that the most highly pLoF-constrained 
genes not only are sensitive to pLoF, but also are more likely to be intol-
erant to increased dosage and other functional alterations.

In contrast to the well-studied effects of coding variation, the effects 
of noncoding SVs on regulatory elements are largely unknown. There are 
a handful of examples of SVs with strong noncoding effects, although 
they are scarce in humans and model organisms31,32. In gnomAD-SV, 
we explored noncoding dosage sensitivity across 14 regulatory ele-
ment classes, ranging from high-confidence experimentally validated 
enhancers to large databases of computationally predicted elements 
(Supplementary Table 5). We found that noncoding CNVs overlapping 
most element classes had increased proportions of singletons, although 
none exceeded the APS observed for pLoF SVs (Fig. 5a). In general, the 
effects of noncoding deletions appeared stronger than noncoding 
duplications, and CNVs predicted to delete or duplicate entire ele-
ments were under stronger selection than partial element disruption 
(Fig. 5b). We also observed that primary sequence conservation was 
correlated with selection against noncoding CNVs (Fig. 5c, d), which 
provides a foothold for future work on interpretation and functional 
effect prediction for noncoding SVs. Broadly, these results followed 
trends we observed for protein-coding SVs, which we interpreted as 
evidence for weak but widespread selection against CNVs altering 
most classes of annotated regulatory elements.

Trait association and clinical genetics
Most large-scale trait association studies have only considered SNVs 
in genome-wide association studies (GWAS). Taking advantage of 
the sample size and resolution of gnomAD-SV, we evaluated whether 
SNVs associated with human traits might be in linkage disequilib-
rium with SVs not directly genotyped in GWAS. We identified 15,634 
common SVs (allele frequency >1%) in strong linkage disequilibrium 
(R2 ≥ 0.8) with at least one common short variant (Supplementary 
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Fig. 7), 14.8% of which matched a reported association from the 
NHGRI-EBI GWAS catalogue or a recent analysis of 4,203 phenotypes 
in the UK Biobank33,34. Common SVs in linkage disequilibrium with 
GWAS variants were enriched for genic SVs across multiple functional 
categories (Supplementary Table 6), and included candidate SVs such 
as a deletion of a thyroid enhancer in the first intron of ATP6V0D1 
at a hypothyroidism-associated locus34 (Extended Data Fig. 7). We 
also identified matches for previously proposed causal SVs tagged 
by common SNVs, including pLoF deletions of CFHR3 or CFHR1 in 
nephropathies and of LCE3B or LCE3C in psoriasis35,36. These results 
demonstrate the value of imputing SVs into GWAS, and for the eventual 
unification of short variants and SVs in all trait association studies. 
Given the potential value of this resource, we have released these link-
age disequilibrium maps in Supplementary Table 7.

As genomic medicine advances towards diagnostic screening at 
sequence resolution, computational methods for variant discovery 
from WGS and population references for interpretation will become 
indispensable. One category of disease-associated SVs, recurrent CNVs 
mediated by homologous segmental duplications known as genomic 
disorders, are particularly important because they collectively repre-
sent a common cause of developmental disorders37. Accurate detection 
of large, repeat-mediated CNVs is thus crucial for WGS-based diagnostic 
testing as chromosomal microarray is the recommended first-tier diag-
nostic screen at present for unexplained developmental disorders37. 
Using gnomAD-SV, we evaluated our ability to detect genomic disorders 
in WGS data by calculating CNV carrier frequencies for 49 genomic 
disorders across 10,047 unrelated samples with no known neuropsy-
chiatric disease and found that CNV carrier frequencies in gnomAD-SV 

were consistent with those reported from chromosomal microarray in 
the UK Biobank38 (R2 = 0.669; Pearson correlation test, P = 7.38 × 10−13) 
(Fig. 6a, Supplementary Table 8, Supplementary Fig. 20). The frequen-
cies of carriers of genomic disorders did not vary significantly among 
populations, with the exception of duplications of NPHP1 at 2q13, in 
which carrier frequencies in East Asian samples were up to 4.6-fold 
higher than in other populations, further highlighting the potential 
for variant interpretation to be confounded by the limited diversity 
of existing SV references (Supplementary Fig. 21).

In the context of variant interpretation, the current gnomAD-SV 
resource will permit a screening threshold of allele frequencies less 
than 0.1% when matching on ancestry to the populations sampled 
here, and allele frequencies less than 0.004% globally. In the current 
release, we catalogued at least one pLoF or copy-gain variant for 36.9% 
and 23.7% of all autosomal genes, respectively, and 490 genes with at 
least one homozygous pLoF SV (Fig. 6b, Extended Data Fig. 6e, Sup-
plementary Fig. 22). We also benchmarked carrier rates for several 
categories of clinically relevant variants in gnomAD-SV. First, 0.32% 
of samples carried a very rare (allele frequency < 0.1%) SV resulting in 
pLoF of a gene for which incidental findings are clinically actionable, 
nearly half of which (that is, 0.13% of all samples) would meet diagnos-
tic criteria as pathogenic or likely pathogenic based upon the Ameri-
can College of Medical Genetics (ACMG) recommendations7 (Fig. 6c). 
Second, 7.22% of individuals were heterozygous carriers of rare pLoF 
SVs in known recessive developmental disorder genes39. Third, we 
estimated that 3.8% of the general population (95% confidence inter-
val of 3.2–4.6%) carries at least one very large (≥1 Mb) rare autosomal 
SV, roughly half of which (45.2%) were balanced or complex (Fig. 6d). 
Among these was an example of localized chromosome shattering 
involving at least 49 breakpoints, yet resulting in largely balanced 
products, reminiscent of chromothripsis, in an adult with no known 
severe disease or DNA repair defect13,14,22 (Fig. 6e, Extended Data Fig. 8). 
Collectively, these analyses highlight the potential of gnomAD-SV 
and WGS-based SV methods to augment disease-association studies 
and clinical interpretation across a broad spectrum of variant classes 
and study designs.

Discussion
Human genetic research and clinical diagnostics are becoming increas-
ingly invested in capturing the complete landscape of variation in 
individual genomes. Ambitious international initiatives to generate 
short-read WGS in many thousands of individuals from common disease 
cohorts have underwritten this goal40,41, and millions of genomes will 
be sequenced in the coming years from national biobanks42,43. A central 
challenge to these efforts will be the uniform analysis and interpretation 
of all variation accessible to WGS, particularly SVs, which are frequently 
invoked as a source of added value offered by WGS. Indeed, early WGS 
studies in cardiovascular disease and autism have been largely consist-
ent in their analyses of short variants, but every study has differed in its 
analysis of SVs18–20,40,41. Thus, while ExAC and gnomAD have prompted 
remarkable advances in medical and population genetics for short 
variants, the same gains have not yet been realized for SVs. Although 
gnomAD-SV is not exhaustively comprehensive, it was derived from 
WGS methods and a reference genome that match those currently used 
in many research and clinical settings, which will help to facilitate the 
eventual standardization of SV discovery, analysis, and interpretation 
across studies.

Most foundational assumptions about human genetic variation were 
consistent between SVs and short variants in gnomAD, most notably 
that SVs segregate stably on haplotypes in the population and experi-
ence selection commensurate with their predicted biological conse-
quences. This study also spotlights unique aspects of SVs, such as their 
remarkable mutational diversity, their varied functional effects on 
coding sequence, and the intense selection against large and complex 
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chromosome 1.

SVs. Our analyses also demonstrate that gene-altering effects of SVs 
beyond pLoF are remarkably similar to the mutational constraints 
of SNVs, and that SNV constraint metrics are not specific to haploin-
sufficiency but underlie a general intolerance to alterations of both 
gene dosage and structure. Beyond genes, we uncovered widespread 
but modest selection against noncoding dosage alterations of many 
families of cis-regulatory elements. This study represents one of the 
largest empirical assessments of noncoding dosage sensitivity in 
humans, and underscores that: (1) few—if any—classes of noncoding 
cis-regulatory variants are likely to experience selection as strong as 
protein-truncating variants; (2) sequence conservation is unsurpris-
ingly one of the strongest features associated with selection against 
noncoding SVs; and (3) current WGS sample sizes are vastly under-
powered to identify individual constrained functional elements in the 
noncoding genome.

The value of the multi-algorithm ensemble approach and deep WGS 
is evident in the improved sensitivity of SV detection in gnomAD-SV. 
However, short-read WGS remains limited by comparison to emerging 
long-read technologies21. Given that short-read WGS is blind to a dis-
proportionate fraction of repeat-mediated SVs and small insertions by 
comparison to long-read methods, this study certainly underestimates 
the true mutation rates within such hypermutable regions. Similarly, 
although our approach involves extensive methods to resolve complex 
SV alleles, some variants such as high-copy-state MCNVs often involve 
complicated haplotype configurations, and we expect that emerging 
de novo assembly and graph-based genome representations will greatly 
expand our knowledge of such SVs21,23. Nonetheless, 92.7% of all known 
autosomal protein-coding nucleotides are not localized to simple- or 
low-copy repeats, and therefore we expect that the catalogues of SVs 
accessible to short-read WGS across large populations like gnomAD-SV 
will capture a majority of the most interpretable gene-disrupting SVs 
in humans.

The scale of short-read WGS datasets currently in production has 
magnified the need for publicly available SV resources, and gnomAD-SV 
represents an initial effort to fill this void. Although these data remain 
insufficient to derive accurate estimates of gene-level constraint, 
sequence-specific mutation rates, and intolerance to noncoding SVs, 
they provide a step towards these goals and reinforce the value of data 
sharing and harmonized analyses of aggregated genomic data sets. 
These data have been made available without restrictions on reuse 
(https://gnomad.broadinstitute.org), and this resource will catalyse 
new discoveries in basic research while providing immediate clinical 
utility for the interpretation of rare structural rearrangements across 
human populations.
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Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All gnomAD-SV site-frequency data for appropriately consented sam-
ples (n = 10,847) have been distributed in VCF and BED format via the 
gnomAD browser (https://gnomad.broadinstitute.org/downloads/), 
as well as from NCBI dbVar under accession nstd166. Furthermore, 
these SVs have been integrated directly into the gnomAD browser8. The 
architecture of the gnomAD browser is described in the main gnomAD 
study4, as well as instructions for how to access and query the data 
hosted therein.

Code availability
The gnomAD-SV discovery pipeline is publicly available via a series 
of methods configured for the FireCloud/Terra platform (https://
portal.firecloud.org/#methods) under the methods namespace 
‘Talkowski-SV’. The svtk software package used extensively in the 
gnomAD-SV discovery pipeline is publicly available via GitHub (https://
github.com/talkowski-lab/svtk). Most custom scripts used in the pro-
duction and/or analysis of the gnomAD-SV dataset are publicly available 
via GitHub (https://github.com/talkowski-lab/gnomad-sv-pipeline). All 
code is made available under the MIT license, unless stated otherwise.
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Extended Data Fig. 1 | Detection of chromosome-scale dosage alterations. 
We estimated ploidy (that is, whole-chromosome copy number) for all 24 
chromosomes per sample. a, Distribution of autosome ploidy estimates across 
14,378 samples passing initial data quality thresholds. White diamonds 
indicate medians. Individual points are outlier samples at least three standard 
deviations away from the cohort-wide mean. The outlier points marked in red 
and blue correspond to the samples highlighted in b–e. b–e, Samples with 
outlier autosome ploidy estimates typically contained somatic or mosaic 
chromosomal abnormalities, such as somatic aneuploidy of chromosome 1 
(chr1) (b) or chromosome 8 (e), or large focal somatic or mosaic CNVs on 
chromosome 3 (c) and chromosome 7 (d). Each panel depicts copy-number 

estimates in 1-Mb bins for each rearranged sample in red or blue. Dark, medium 
and light-grey background shading indicates the range of copy number 
estimates for 90%, 99% and 99.9% of all gnomAD-SV samples, respectively, and 
the medium grey line indicates the median copy number estimate across all 
samples. Regions of unalignable N-masked bases >1 Mb in the reference 
genome are masked with grey rectangles. f, Sex chromosome ploidy estimates 
for all samples from a. We inferred karyotypic sex by clustering samples to their 
nearest integer ploidy for sex chromosomes. Several abnormal sex 
chromosome ploidies are marked, including XYY (i), XXY (ii), XXX (iii), and 
mosaic loss-of-Y (iv). g, Histogram representation of the data from f. Essentially 
all samples conformed to canonical sex chromosome ploidies.
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Extended Data Fig. 2 | Benchmarking the technical qualities of the 
gnomAD-SV callset. We evaluated the quality of gnomAD-SV with seven 
orthogonal analyses detailed in Supplementary Table 4, Supplementary 
Figs. 6–9 and Supplementary Note 1. Four core analyses are presented here.  
a, Apparent rates of de novo (that is, spontaneous) heterozygous SVs per child 
across 970 parent–child trios. Each point is a single trio, and vertical lines 
denote medians. Given the expected mutation rate of SVs accessible to 
short-read WGS1,20 (<1 true de novo SV per trio; see also Fig. 3a), effectively all 
de novo SVs represented a combination of false-positive genotypes in children 
and/or false-negative genotypes in parents. SVs passing all filters and included 
in the final gnomAD-SV callset (‘pass’) are shown in green. For comparison, 
variants that did not pass post hoc site-level filters (‘not pass’) are also shown in 
purple. b, Hardy–Weinberg equilibrium (HWE) metrics for all biallelic SVs 
localized to autosomes. Deviation from HWE was assessed using a chi-square 
goodness-of-fit test with one degree of freedom. Vertex labels reflect 
genotypes: 0/0 denotes homozygous reference; 0/1 denotes heterozygous; 
and 1/1 denotes homozygous alternate, with all sites shaded by chi-squared 
P value. c, Linkage disequilibrium between SVs and SNVs or indels for 23,706 
common (allele frequency > 1%) SVs represented as cross-population maximum 
R2 values after excluding repetitive and low-complexity regions (see 
Supplementary Fig. 7). Points and vertical bars represent medians and 
interquartile ranges, respectively. d, Correlation of allele frequency (AF) for 
37,907 common SVs captured by both the 1000 Genomes Project and 
gnomAD-SV1. Pearson’s correlation coefficient (R2) is provided.



Extended Data Fig. 3 | In silico confirmation of SVs in gnomAD-SV with 
long-read WGS. We used Pacific Biosciences (PacBio) long-read WGS data 
available for four samples in this study to perform in silico confirmation to 
estimate the positive predictive value and breakpoint accuracy for SVs in 
gnomAD-SV21,45,46 (Supplementary Fig. 10). a, Counts of SVs evaluated per 
sample in this analysis. SVs were restricted to those with breakpoint-level read 
support (that is, ‘split-read’ evidence, 92.8% of all SVs) and did not have 
breakpoints localized to annotated simple repeats or segmental duplications. 
b, An iterative local long-read WGS realignment algorithm, VaPoR47, was used to 
perform in silico confirmation of SVs predicted from short-read WGS in 
gnomAD-SV. As noted by the VaPoR developers47, the performance of this 
approach was sensitive to the sequencing depth of long-read WGS data. 
Therefore, the weighted mean of the four samples was used as a study-wide 
long-read WGS confirmation rate, weighting the confirmation rate of each 
sample based on the square root of its long-read WGS sequencing depth.  
c, Confirmation rates stratified by SV class, size and allele frequency. A mean of 
4,829 SVs per sample were assessed. Horizontal green bars denote weighted 
means.
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Extended Data Fig. 4 | SVs contribute a substantial burden of rare, 
homozygous, and coding mutations per genome. a–d, Counts of SVs per 
genome across a variety of parameters, corresponding to median counts of 
total SVs (a), homozygous SVs (b), rare SVs (c) and singleton SVs (d). Samples 
are grouped by population and coloured by SV types. The solid bar to the left of 
each population indicates the population median. e–g, Median counts of genes 
disrupted by SVs per genome when considering all SVs (including MCNVs) (e), 
homozygous SVs (including MCNVs) (f), and rare SVs (g). Colours correspond 

to predicted functional consequence. h, Counts of pLoF SVs per genome. For 
certain categories, such as genes disrupted by rare SVs per genome, a subset of 
samples (<5%) were enriched above the population average, as expected for 
individuals carrying large, rare CNVs predicted to cause the disruption of 
dozens or hundreds of genes (see Extended Data Fig. 1); for the purposes of 
visualization, the y axis for all panels has been restricted to a maximum of three 
interquartile ranges above the third quartile across all samples for each 
category.



Extended Data Fig. 5 | Rearrangement size is a primary determinant of 
allele frequency for most classes of SVs. a, Proportion of singleton SVs in five 
SV size bins for each class of biallelic SVs considered in this study. Intergenic 
SVs (light colours; n = 206,954) exhibited reduced singleton proportions when 
compared to all SVs (dark colours; n = 335,470) of the same size and class. Bars 
reflect 95% confidence intervals from 100-fold bootstrapping. Categories with 
fewer than ten SVs are not shown. b, To account for the strong dependency of 
singleton proportion on SV size and class, we developed the APS metric, which 
normalizes singleton proportions using SV-specific technical and genomic 
covariates to permit comparisons of the frequency spectra across SV classes 

(see Supplementary Fig. 14). The same data as in a are shown, transformed onto 
the APS scale, which shows effectively no dependency on SV size for intergenic 
SVs. Bars reflect 95% confidence intervals from 100-fold bootstrapping. 
Residual deviation from APS = 0 is maintained when considering all SVs, owing 
to APS being intentionally calibrated to intergenic SVs as a proxy for neutral 
variation. Because larger SVs are more likely to be gene-disruptive, they 
upwardly bias the APS point estimates due to residual negative selection not 
captured by SV size alone. Counts of SVs per category for both a and b are listed 
in Supplementary Table 9.
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Extended Data Fig. 6 | Most SVs within genes appear under negative 
selection. a, Enrichments for pLoF consequences among rare and singleton 
SVs across SV classes. b, Enrichments for non-pLoF functional consequences 
among rare and singleton SVs across SV classes. c, Adjusted proportion of 
singletons across SV types and functional consequences. d, APS among 
deletions relative to count of exons and whole genes deleted. e, Fractions of all 
autosomal protein-coding genes with at least one SV across a variety of 
functional consequences. f, Relationship of APS and constraint against pLoF 

SNVs4. For this analysis, intronic, promoter and UTR SVs were required to have 
precise breakpoints (that is, have ‘split-read’ support) to protect against any 
cryptic overlap with coding sequence unable to be annotated due to imprecise 
breakpoints. For c, d and f, points and vertical bars represent 95% confidence 
intervals from 100-fold bootstrapping, respectively. Counts of SVs per 
category in c and d are provided in Supplementary Table 9. For d and f, 
deletions in highly repetitive or low-complexity sequence (≥30% coverage by 
annotated segmental duplications or simple repeats) were excluded.



Extended Data Fig. 7 | gnomAD-SV can augment disease association 
studies. a, Functional enrichments of 2,307 common SVs in strong linkage 
disequilibrium (R2 ≥ 0.8) with an SNV associated with a trait or disease in the 
GWAS catalogue or the UK Biobank33,34. Points represent odds ratios of SVs 
being in strong linkage disequilibrium with at least one GWAS-significant SNV 
among all SVs in strong linkage disequilibrium with at least one SNV (total 
n = 15,634 SVs). Single and triple asterisks correspond to nominal (P < 0.05) and 
Bonferroni-corrected (P < 0.0083) significance thresholds from a two-sided 
Fisher’s exact test, respectively. Bars represent 95% confidence intervals. Test 
statistics, SV counts, and P values are provided in Supplementary Table 6.  
b, Example locus at 16q22.1, where we identified a 336-bp deletion in strong 
linkage disequilibrium with SNVs significantly associated with hypothyroidism 
in the UK Biobank34. Top, the GWAS signal among genotyped SNVs in the UK 
Biobank, coloured by strength of linkage disequilibrium (Pearson’s R2 value) 
with the 336-bp deletion identified in gnomAD-SV. Bottom, the local genomic 
context of this deletion, which overlaps an annotated intronic Alu element near 
(<1 kb) the first exon of a highly constrained, thyroid-expressed gene, 
ATP6V0D1. The deletion lies amidst histone mark peaks commonly found at 
active enhancers (H3K27ac and H3K4me1) based on publicly available 
chromatin data from adult thyroid samples, a phenotype-relevant tissue48. 
Human Alu elements are known to frequently act as enhancers, and the sentinel 
hypothyroidism SNV from the UK Biobank GWAS is a significant 
expression-modifying variant (that is, eQTL) for ATP6V0D1 and other nearby 
genes across many tissues, which indicates that the hypothyroidism risk 
haplotype modifies expression of ATP6V0D1 and/or other genes, potentially 
through the deletion of an intronic enhancer4,49.
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Extended Data Fig. 8 | An extremely complex SV involving 49 breakpoints 
and seven chromosomes. A highly complex insertion rearrangement from 
gnomAD-SV in which 47 segments from six different chromosomes were 
duplicated and inserted into a single locus on chromosome 1, forming a 
626,065 bp stretch of contiguous inserted sequence composed of shattered 
fragments. Given the involvement of multiple chromosomes, the signature of 
localized shattering, and the clustered breakpoints, we note that this 
rearrangement has several hallmarks of germline chromothripsis, which has 
been observed in healthy adults previously, albeit rarely22. However, unlike 
previous reports of germline chromothripsis, there are no apparent 

whole-chromosome translocations, and all segments were duplicated before 
being inserted in a compound manner into chromosome 1, potentially 
suggesting a replication-based repair mechanism. The exact origin of this 
rearrangement is unclear. a, Circos representation of all 49 breakpoints and 
seven chromosomes involved in this SV. Teal arrows indicate insertion point 
into chromosome 1. b, The median segment size was 8.4 kb. c, Linear 
representation of the rearranged inserted sequence. Colours correspond to 
chromosome of origin, and arrows indicate strandedness of the inserted 
sequence, relative to the GRCh37 reference.
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