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BACKGROUND
Despite evidence that genetic factors contribute to the duration of gestation and 
the risk of preterm birth, robust associations with genetic variants have not been 
identified. We used large data sets that included the gestational duration to determine 
possible genetic associations.

METHODS
We performed a genomewide association study in a discovery set of samples obtained 
from 43,568 women of European ancestry using gestational duration as a continuous 
trait and term or preterm (<37 weeks) birth as a dichotomous outcome. We used 
samples from three Nordic data sets (involving a total of 8643 women) to test for 
replication of genomic loci that had significant genomewide association (P<5.0×10−8) 
or an association with suggestive significance (P<1.0×10−6) in the discovery set.

RESULTS
In the discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and WNT4) 
were significantly associated with gestational duration. Functional analysis showed 
that an implicated variant in WNT4 alters the binding of the estrogen receptor. The 
association between variants in ADCY5 and RAP2C and gestational duration had 
suggestive significance in the discovery set and significant evidence of association 
in the replication sets; these variants also showed genomewide significance in a 
joint analysis. Common variants in EBF1, EEFSEC, and AGTR2 showed association 
with preterm birth with genomewide significance. An analysis of mother–infant 
dyads suggested that these variants act at the level of the maternal genome.

CONCLUSIONS
In this genomewide association study, we found that variants at the EBF1, EEFSEC, 
AGTR2, WNT4, ADCY5, and RAP2C loci were associated with gestational duration and 
variants at the EBF1, EEFSEC, and AGTR2 loci with preterm birth. Previously estab-
lished roles of these genes in uterine development, maternal nutrition, and vascular 
control support their mechanistic involvement. (Funded by the March of Dimes and 
others.)
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Preterm birth (defined as birth be-
fore 37 completed weeks of gestation) affects 
9.6% of pregnancies in the United States1 

and more than 15 million pregnancies worldwide 
each year. It is the leading cause of death in neo-
nates and children under the age of 5 years.2,3 The 
majority of preterm births arise by spontaneous, 
idiopathic onset of uterine contractions or rupture 
of fetal membranes.4 A substantial body of evi-
dence has shown genetic influence in the duration 
of gestation and the risk of preterm birth.5 For 
example, twin and family studies suggest that 
30 to 40% of the variation in birth timing and 
in the risk of preterm birth arises from genetic 
factors that largely but not exclusively reside in 
the maternal genome.6-10

Preterm birth, and gestational duration in 
general, is a complicated phenotype that is af-
fected by both maternal and fetal genomes. The 
definition of preterm birth as a dichotomous 
trait on the basis of a somewhat arbitrary cutoff 
of 37 weeks of gestation, rather than time of birth 
for a specified level of fetal maturity or as a 
continuous trait, limits the interpretation of data 
and reduces the statistical power to detect asso-
ciation.11 Therefore, we tested for genetic associa-
tions with gestational duration (a quantitative trait) 
as well as preterm birth (a dichotomous trait). To 
date, individual genomewide association studies 
(see Glossary) of spontaneous preterm birth have 
included approximately 1000 case mothers or in-
fants with control groups of similar size. No rep-
licated loci with genomewide significance have 
been reported.12-14 To overcome sample-size lim-
itations, we conducted genomewide discovery in 
a large cohort of women of European ancestry 
and tested associations that were identified in 
the discovery set for replication in three Nordic 
data sets.

Me thods

Discovery Data Set

We performed a two-stage genomewide associa-
tion study to discover and replicate genetic loci 
associated with gestational duration and the risk 
of preterm birth. Women in the discovery data 
set were participants in the research program of 
23andMe, a personal genomics and biotechnology 
company. All the women provided written in-
formed consent and answered surveys online ac-
cording to a human-subjects protocol approved by 

Ethical and Independent Review Services (www​
.eandireview​.com). Unrelated women of European 
ancestry who self-reported the gestational dura-
tion of their first live singleton birth were included 
in the analysis. Women with a medical indication 
for their preterm delivery were excluded; those 
who did not specify a medical indication were 
included to optimize sample size. Preterm-birth 
status was determined on the basis of dichotomi-
zation of gestational duration (preterm, <37 weeks; 
term, ≥37 weeks).

DNA extraction and genotyping were per-
formed by the National Genetics Institute. We 
restricted analyses to 43,568 women with more 
than 97% European ancestry, as determined by 
means of an analysis of local ancestry.15 Genotype 

1000 Genomes Project: An international collaboration to produce an exten-
sive public catalogue of human genetic variation. Phase 1 of the project 
described genomes of 1092 samples from 14 populations. The haplo-
types that are inferred from the 1000 Genomes Project data (reference 
haplotypes) can be used to impute genotypes at sites not on the original 
SNP array.

Genomewide association study (GWAS): An approach used in genetics re-
search to look for associations between many (typically hundreds of 
thousands) specific genetic variations (most commonly, single-nucleo-
tide polymorphisms [SNPs]) and particular diseases or traits.

Genomewide complex trait analysis (GCTA): A computational tool that was 
originally designed to estimate the proportion of phenotypic variance ex-
plained by genomewide or chromosomewide SNPs for complex traits, 
has many other functions to analyze the genetic architecture of complex 
traits.

GTEx: The Genotype–Tissue Expression project collects and analyzes multi-
ple human tissues from donors to assess correlations between genotype 
and tissue-specific levels of gene expression. If the expression levels of 
genes are treated as quantitative traits, variations in gene expression that 
are highly correlated with genetic variation can be identified as expres-
sion quantitative trait loci.

GWAS Catalog: A quality controlled, manually curated, literature-derived col-
lection of all published genomewide association studies assaying at least 
100,000 SNPs and all SNP-trait associations with P values of less than 
1.0×10−5. The GWAS Catalog is provided jointly by the National Human 
Genome Research Institute and the European Bioinformatics Institute.

Locus: The specific chromosomal location of a gene or other DNA sequence 
of interest.

Phenotype variance: The proportion of interindividual difference (variance)  
in a phenotypic trait usually combines the genotype variance with the en-
vironmental variance.

RNA sequencing: RNA sequencing uses next-generation sequencing to detect 
and quantify RNA in a biologic sample to measure transcript abundance.

Single-nucleotide polymorphism (SNP): A single-nucleotide variation in a 
genetic sequence; a common form of variation in the human genome.

Transcript: An RNA sequence resulting from transcription of a DNA se-
quence (often a gene).

Glossary
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data were imputed against the reference haplo-
types of phase 1 of the 1000 Genomes Project.16

We used linear regression to test single-marker 
genetic associations with gestational duration and 
logistic regression to test such associations with 
preterm birth on the basis of imputed allelic dos-
age (i.e., the expected allele count, as reported by 
the imputation program). We included as covari-
ates the maternal age and the top five principal 
components to account for residual population 
structure (i.e., the difference in allele frequencies 
between subpopulations).

We clustered single-nucleotide polymorphisms 
(SNPs) into association regions (or loci) by first 
identifying SNPs with an association of P<1.0×10−4 
and then grouping these SNPs into a region if 
they were adjacent to each other (<250 kb). The 
SNP with the smallest P value within each region 
was chosen as the index SNP. Regions with sug-
gestive significance (P<1.0×10−6) were tested in 
the replication stage.

Tests of Replication

To test for replication, we used data from 8643 
mothers and 4090 infants collected from three 
Nordic birth studies,17 in which samples from pre-
term births were enriched and samples from births 
that were post-term or close to the preterm–term 
boundary (37 to 38 weeks of gestation) were 
excluded (Table S1 and Fig. S2 in the Supplemen-
tary Appendix, available with the full text of this 
article at NEJM.org). Genotyping on samples from 
these studies was conducted with the use of vari-
ous SNP arrays, as described previously.17 Partici-
pants of non-European ancestry were identified 
and excluded with the use of principal compo-
nents analysis. We performed genomewide im-
putation using the reference haplotypes extract-
ed from phase 1 of the 1000 Genomes Project.16

We tested single-marker genetic association 
in each replication data set using methods simi-
lar to those used in the discovery stage. We used 
the fixed-effects inverse-variance method to cal-
culate the replication P values after adjustment 
for the genomic inflation factor (which is used 
to quantify the excess false positive rate) in a 
combined analysis of the three Nordic data sets. 
Among the SNPs that had an association with 
genomewide suggestive significance (P<1.0×10−6) 
in the discovery stage or SNPs in close linkage 
disequilibrium (r2>0.80), those that showed sig-
nificant association (and in the same direction) 
in tests of replication were regarded as statistical 

evidence of replication of a putative locus. The 
significance level of each locus was corrected by 
the effective number of independent SNPs18 that 
were tested in the locus and the total number of 
loci that were tested in the replication data sets 
(Table S6 in the Supplementary Appendix). An 
association was considered to be replicated if the 
P value of the most strongly associated SNP was 
less than the threshold of significance and had 
a combined discovery and replication P value of 
less than 5.0×10−8.

We also performed association tests on sam-
ples obtained from the 4090 infants and joint 
maternal–fetal genetic association analysis in 
3184 mother–infant pairs from the three replica-
tion sets that met the inclusion criteria (see the 
section describing the replication methods in 
the Supplementary Appendix) to evaluate wheth-
er the observed associations were driven by vari-
ants in the maternal genome or by variants in the 
fetal genome.

Statistical Analysis

We used the GWAS Catalog,19 a database of all 
published genomewide association studies that 
is produced by a collaboration between the Na-
tional Human Genome Research Institute and the 
European Bioinformatics Institute, to check wheth-
er the SNPs that were associated with gestational 
duration or preterm birth have been associated 
with other traits previously. In addition, we used 
the GTEx20 database, which stores information on 
genotype and tissue-specific gene-expression levels, 
to determine whether any of the implicated SNPs 
could influence tissue-specific gene expression. 
We examined whether multiple independent vari-
ants at a given locus influenced birth timing by 
means of an approximate conditional and joint 
analysis.21 We estimated the fraction of pheno-
type variance that was explained by all common 
SNPs22 by means of genomewide complex trait 
analysis (GCTA)23 or sets of significant SNPs us-
ing a genetic-score approach.24 A detailed descrip-
tion of these analyses is provided in the section 
describing other statistical and bioinformatics 
analyses in the Supplementary Appendix.

R esult s

Study Data Sets

In the discovery data set, of the 43,568 women who 
had been identified through 23andMe, 37,803 
(86.8%) had delivered at term (37 to 42 weeks), 
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3331 (7.6%) before term (<37 weeks), and 2434 
(5.6%) after term (>42 weeks) (Tables S1 and S2 
and Fig. S1 in the Supplementary Appendix). 
Maternal age was strongly associated with ges-
tational duration (P = 2.3×10−41) (Table S3 in the 
Supplementary Appendix). In the three Nordic 
birth studies,17 the sex of the infant and mater-
nal height were associated with gestational dura-
tion (Table S4 in the Supplementary Appendix).

Discovery-Stage Findings in Mothers

Single-marker association tests were performed 
across 15,635,593 SNPs (see the Methods section 
in the Supplementary Appendix). The summary 

statistical outcomes of the top 10,000 SNPs have 
been deposited in the GeneStation repository 
(www​.genestation​.org/​analysis/​gwas/​Zhang_2017/​
discovery), and summary statistics of the complete 
data set are available on request from 23andMe. 
The corresponding author holds a copy of the sum-
mary statistical outcomes of the full set of SNPs. 
Test results were adjusted for genomic inflation 
factors (Fig. S3 in the Supplementary Appendix).

With respect to gestational duration, 12 loci 
were identified with an association of P<1.0×10−6, 
4 of which had an association of P<5.0×10−8 
(Fig. 1A, and Tables S5 and S6 in the Supplemen-
tary Appendix). With respect to preterm birth,  

Figure 1. Results of the Discovery-Stage Genomewide Association Study.

Panel A shows the 12 loci that were associated with gestational duration with “suggestive significance” (P<1.0×10−6,  
in orange), 4 of which were associated with “genomewide significance” (P<5.0×10−8, in red). Panel B shows the 5 loci 
that had an association with preterm birth with suggestive significance (in orange), 2 of which had an association  
of genomewide significance (in red). The top 3 loci that were associated with gestational duration (EBF1, EEFSEC, 
and AGTR2) were also associated with preterm birth. The names of the 6 replicated loci are highlighted in bold.
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5 loci were identified with an association of 
P<1.0×10−6, 2 of which had an association of 
P<5.0×10−8 (Fig. 1B). Of these 17 loci, the top 3 
that were associated with gestational duration 
(EBF1, EEFSEC, and AGTR2) were also associated with 
preterm birth, so altogether, 14 independent loci 
were selected for replication. In similar associa-
tion tests in a subgroup of discovery participants 
who explicitly checked “spontaneous delivery” in 
the questionnaire, the results were similar to those 
obtained from the full discovery data sets (Table S7 
in the Supplementary Appendix).

Tests of Replication

Among the candidate 14 loci, 6 were significantly 
replicated: EBF1, EEFSEC, and AGTR2, which were 
associated with both gestational duration and 
preterm birth, and WNT4, ADCY5, and RAP2C, 
which had significant association with gesta-
tional duration but not with preterm birth (Ta-
ble 1, and Tables S8 and S9 in the Supplementary 
Appendix). In addition, showing marginal signifi-
cance (P<0.05) were associations between the 
BOLA3 locus with gestational duration and asso-
ciations between the TEKT3 and TGFB1 loci with 
preterm birth.

Annotation of Implicated SNPs

Within these replicated loci, there are SNPs that 
have been reported as being associated with other 
complex traits (Tables S6 and S10 in the Supple-
mentary Appendix).19 Three SNPs (rs10934853, 
rs2999052, and rs2687729) at the EEFSEC locus 
were associated with both gestational duration and 
preterm birth (Tables S8 and S9 in the Supple-
mentary Appendix). The alleles that were associ-
ated with a longer duration of gestation have also 
been associated with an increased risk of prostate 
cancer (rs10934853-A),25 a reduced risk of hypo-
spadias (rs2999052-C),26 and a later age of men-
arche (rs2687729-G).27,28 At the WNT4 locus, five 
significant SNPs in close linkage disequilibrium 
that were associated with gestational duration 
had been previously found to be associated with 
endometriosis,29 ovarian cancer,30 and bone min-
eral density.31 The WNT4 alleles that we observed 
to be associated with increased gestational dura-
tion have been previously identified as risk alleles 
for endometriosis, ovarian cancer, and low bone 
mineral density (Table S10 in the Supplementary 
Appendix). According to the GTEx database, 
some SNPs at four replicated loci (EBF1, EEFSEC, A
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WNT4, and ADCY5) can influence the messenger 
RNA expression level of nearby genes20 (Tables 
S11 and S12 in the Supplementary Appendix).

SNPs at the ADCY5 locus have been associated 
with birth weight32 and blood glucose traits.33 More 
recently, a meta-analysis has revealed SNPs at the 
ADCY5, WNT4, and EBF1 loci that are associated 
with birth weight.34 The SNPs that were impli-
cated in this meta-analysis, at the ADCY5 and WNT4 
loci, appear to influence birth weight through the 
fetal genome. None of these SNPs were in close 
linkage disequilibrium with the SNPs showing 
significant association with gestational duration, 
whereas the SNP at the EBF1 locus (rs7729301) 
seems to influence birth weight through the ma-
ternal effect, and the allele (G) that was associated 
with reduced birth weight was associated with a 
shorter gestational duration (Tables S8 and S10 in 
the Supplementary Appendix).

Maternal or Fetal Genetic Effect?

We then tested for associations between the im-
plicated SNPs and gestational duration and pre-
term birth in the infant samples (Tables S13 and 
S14 in the Supplementary Appendix). We observed 
the same associations as those in the maternal 
samples, and in the same direction, but with 
smaller effect sizes (Table S15 in the Supplemen-
tary Appendix). The effect sizes that were esti-
mated from infant samples were highly correlated 
with the effect sizes that were estimated from the 
maternal samples (r2 = 0.95) and were approxi-
mately half the size of those effects, a finding 
that supports the theory that the effect observed 
in infants is due to sharing of one maternal allele 
by descent (Fig. S4 in the Supplementary Appen-
dix). In addition, joint association analysis in 
mother–infant pairs showed significant associa-
tions exclusively with maternal genotypes but not 
with fetal genotypes, which also indicates a ma-
ternal origin of the observed genetic associations 
(Table S16 in the Supplementary Appendix). The 
estimated phenotypic variances that were explained 
by all common SNPs in mothers (minor allele fre-
quency, >0.01) were approximately 17% for gesta-
tional duration and 23% for preterm birth, as 
transformed to the heritability of the underlying 
disease liability (Table S18 in the Supplementary 
Appendix). Findings for detection of allelic hetero-
geneity, dominance effects, percentage of the vari-
ance explained, and gene set enrichment and 
pathway analyses are provided in the section de-

scribing other statistical and bioinformatics analy-
ses in the Supplementary Appendix.

Functional Evidence Implicating WNT4

The WNT4 locus implicates the endometrium as 
a determinant of preterm birth.35 The function of 
WNT4 is critical to decidualization of the endome-
trium and subsequent implantation and establish-
ment of pregnancy.36 Using RNA sequencing, we 
confirmed a substantial induction of WNT4 ex-
pression with decidualization, since we detected 
no transcripts per million before decidualization 
in vitro and 29.5 transcripts per million after 
decidualization.

We used the catalogue of inferred sequence-
binding preferences37 to predict transcription fac-
tors, the binding of which would be altered by the 
implicated variants at the WNT4 locus. We pre-
dicted that the thymidine (T) allele of rs3820282 
(r2 = 0.94 with the index SNP rs56318008) in the 
first intron of WNT4 would alter the binding of 
estrogen receptor 1 (ESR1). This allele creates a 
near-perfect half-site for ESR1 (Fig. 2A). The de-
rived enrichment score of the protein-binding 
microarrays, which evaluates the allele-specific 
binding strength, was 0.46 (indicating strong 
binding) for this allele, whereas that of the alter-
native allele, a cytosine (C) residue, was 0.09 
(indicating no binding). This finding is consis-
tent with the observation that ESR1 is capable of 
binding to this locus in a cellular context.38 We 
confirmed the presence of H3K4me3 marks and 
an open chromatin domain overlapping rs3820282 
in an immortalized endometrial stromal-cell line, 
which showed that the chromatin over this locus 
was probably accessible and active in these cells 
(Fig.  2A). (H3K4me3 is a histone modification 
that is found in active promoter regions, and an 
open chromatin domain indicates that the re-
gion is accessible to transcription factors.) Using 
an electrophoretic mobility shift assay, we de-
tected enhanced binding of ESR1 to the T allele 
of rs3820282 (Fig.  2B). Collectively, these data 
indicate that the association between gestational 
duration and the WNT4 locus is driven by the 
modulation of the binding of ESR1 through 
rs3820282.

Discussion

We identified and replicated six maternal genomic 
loci that were robustly associated with gestational 
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duration and that contained genes in which the 
established functions are consistent with a role 
in the timing of birth. Three of these loci were 
also associated with preterm birth with genome-
wide significance.

EBF1, which encodes early B-cell factor 1, is 
essential for normal B-cell development,39 and 
genomewide association studies have implicated 
it in the control of blood pressure,40,41 carotid-
artery intima–media thickness,42 hypospadias,26 
and metabolic risk.43 It remains to be determined 
whether EBF1 confers its effect on birth timing 
through pregnancy-specific mechanisms or by 

contributing to more general cardiovascular or 
metabolic traits that influence gestation. In addi-
tion, the association between this locus and gesta-
tional duration may explain the effect of this locus 
on birth weight, as reported by Horikoshi et al.34

EEFSEC, which encodes selenocysteine tRNA-
specific eukaryotic elongation factor, participates 
in the incorporation of selenocysteine into sele-
noproteins. Selenoproteins serve critical cellular 
homeostatic functions in maintaining redox sta-
tus and antioxidant defenses, as well as modulat-
ing inflammatory responses.44 These physiologic 
functions have been linked to the parturition pro-

Figure 2. ESR1 Binding at the WNT4 Locus.

Panel A shows how the rs3820282 T allele creates a strong binding site for estrogen receptor 1 (ESR1). The sequence logo of the ESR1 
binding motif shows the DNA-binding preferences of ESR1. Tall nucleotides above the dashed line indicate DNA bases that are preferred 
by ESR1, whereas bases below the dashed line are disfavored. The y axis indicates the relative free energies of binding for each nucleo-
tide at each position. The height of each nucleotide can be interpreted as the free energy difference from the average (ΔΔG) in units of 
gas constant (R) and temperature (T). The sequence located in the WNT4 promoter is shown directly below the x axis, with the T allele 
for rs3820282 at the bottom. The T allele changes the sequence from C (most disfavored) to T (most preferred). In the UCSC Genome 
Browser screen shot depicted below the graph, the variant rs3820282 overlaps strong signals obtained from the assay for transposase-
accessible chromatin with high-throughput sequencing (ATAC seq, a technique used in molecular biology to study chromatin accessibili-
ty) and H3K4me3 signals (a chemical mark present on histone H3 that is indicative of an active promoter) in decidual stromal cells at 
the WNT4 locus. The red vertical line indicates the position of rs3820282. The purple graphic below the screen shot indicates the loca-
tions of the WNT4 exons (columns), untranslated regions (rectangles), and introns (horizontal lines), with the arrows indicating the di-
rection of transcription. Panel B shows the experimental validation of allele-dependent binding of ESR1 to rs3820282 on electrophoretic 
mobility shift assay (EMSA), with the arrows indicating allele-dependent binding of ESR1 (bottom arrow) and a “supershift” of the pro-
tein-DNA complex induced by the binding of the ESR1 antibody to the complex (top arrow).
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cess and preterm birth.45-47 Moreover, the SNPs we 
identified in EEFSEC are in high linkage disequi-
librium with SNPs that have been associated with 
the risk of prostate cancer,25 the risk of hypospa-
dias,26 and the age at menarche.27 The identifi-
cation of the selenocysteine pathway suggests a 
potential benefit for further evaluation of the role 
of maternal selenium micronutrient status on 
prematurity risk, as suggested by one study that 
showed an association between a reduced sele-
nium concentration and preterm birth.48 In ad-
dition, Malawi, the country with the highest 
global risk of preterm birth,49 has a high preva-
lence of selenium deficiency.50

It has been suggested that AGTR2, which en-
codes angiotensin II receptor type 2, plays a role 
in modulating uteroplacental circulation and 
harbors variants that may contribute to the risk 
of preeclampsia.51,52 It is unlikely that the asso-
ciation that we identified with AGTR2 indicates a 
risk of preeclampsia rather than of spontaneous 
preterm birth, because women with preeclamp-
sia as a reason for their delivery were excluded 
from the Nordic studies and women were ex-
cluded from the 23andMe discovery data set if 
medical indications for delivery were reported.

WNT4, which encodes wingless-type MMTV 
integration site family member 4, was strongly 
replicated in the Nordic populations. WNT4 mu-
tations have been found in women with müllerian 
duct abnormalities, primary amenorrhea, and 
hyperandrogenism,53 and common variants in 
WNT4, which are in high linkage disequilibrium 
with our index SNPs, are associated with endo-
metriosis,29 ovarian cancer,30 and bone mineral 
density.31 Our analysis indicates that the T allele 
of the putative causative variant rs3820282 in the 
Nordic populations is associated with an in-
creased gestational duration and is protective for 
preterm birth. The rs3820282 variant is located 
in an active chromatin domain in the first intron 
of WNT4, and the T allele generates a strong 
ESR1-binding site and as such probably alters the 
estrogen-based regulation of WNT4 or adjacent 
genes. The role of augmented estrogen signaling 
as the functional consequence of the polymor-
phism is further supported by the association of 
the same region with endometriosis and ovarian 
cancer, both of which are hormone-responsive 
disorders. Finally, the population prevalence of 
endometriosis among women of Asian, European, 

or African ancestry corresponds to the frequen-
cies of the T allele of rs3820282 (0.49, 0.14, and 
0.01, respectively).54,55

ADCY5, which encodes adenylyl cyclase type 5, 
and RAP2C, which encodes a member of the RAS 
oncogene family, had associations of nearly ge-
nomewide significance in the discovery stage and 
were successfully replicated (Table  1). SNPs at 
the ADCY5 locus have been reported to be associ-
ated with birth weight32 and type 2 diabetes33; 
however, none were in linkage disequilibrium 
with the SNPs showing significant association 
with gestational duration. The SNP rs2747022 in 
the RAP2C region (in gene FRMD7) was previously 
reported to be associated with spontaneous pre-
term delivery in Danish and Norwegian studies.56 
(The samples used in this study overlap with our 
replication samples.)

Our study had limitations regarding the char-
acteristics of the discovery data set, in which data 
regarding gestational duration in the 23andMe 
samples were self-reported. One study has shown 
that approximately 90% of the gestational dura-
tions that were reported by mothers agreed with 
the associated medical records.57 Also, we could 
not distinguish spontaneous births from medi-
cally indicated births among women who carried 
their pregnancies to term. In addition, all the 
participants in our study were of European an-
cestry, in both the discovery and replication data 
sets. Thus, whether the same loci are involved in 
birth timing among women of other ancestries 
is uncertain.

Our study shows the utility of combining 
large samples that have self-reported phenotyping 
with more modestly sized but precisely pheno-
typed replication studies to reveal maternal loci 
associated with gestational duration and preterm 
birth. With this foundation, we anticipate that 
larger studies of samples with maternal and fe-
tal genotyping associated with data regarding 
gestational duration will further refine our un-
derstanding of human pregnancy and the risk of 
adverse pregnancy outcomes.
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