672 research outputs found

    Heat engines and heat pumps in a hydrostatic atmosphere: How surface pressure and temperature constrain wind power output and circulation cell size

    Full text link
    The kinetic energy budget of the atmosphere's meridional circulation cells is analytically assessed. In the upper atmosphere kinetic energy generation grows with increasing surface temperature difference \$\Delta T_s\$ between the cold and warm ends of a circulation cell; in the lower atmosphere it declines. A requirement that kinetic energy generation is positive in the lower atmosphere limits the poleward cell extension \$L\$ of Hadley cells via a relationship between \$\Delta T_s\$ and surface pressure difference \$\Delta p_s\$: an upper limit exists when \$\Delta p_s\$ does not grow with increasing \$\Delta T_s\$. This pattern is demonstrated here using monthly data from MERRA re-analysis. Kinetic energy generation along air streamlines in the boundary layer does not exceed \$40\$~J~mol\$^{-1}\$; it declines with growing \$L\$ and reaches zero for the largest observed \$L\$ at 2~km height. The limited meridional cell size necessitates the appearance of heat pumps -- circulation cells with negative work output where the low-level air moves towards colder areas. These cells consume the positive work output of the heat engines -- cells where the low-level air moves towards the warmer areas -- and can in theory drive the global efficiency of atmospheric circulation down to zero. Relative contributions of \$\Delta p_s\$ and \$\Delta T_s\$ to kinetic energy generation are evaluated: \$\Delta T_s\$ dominates in the upper atmosphere, while \$\Delta p_s\$ dominates in the lower. Analysis and empirical evidence indicate that the net kinetic power output on Earth is dominated by surface pressure gradients, with minor net kinetic energy generation in the upper atmosphere. The role of condensation in generating surface pressure gradients is discussed.Comment: 26 pages, 9 figures, 2 tables; re-organized presentation, more discussion and a new figure (Fig. 4) added; in Fig. 3 the previously invisible dots (observations) can now be see

    On estimating tropical forest carbon dynamics in Papua New Guinea

    No full text
    One of the few initiatives to address ongoing global warming that did not completely stall at the UNFCCC climate change negotiations was the reduction emissions from deforestation and forest degradation (REDD). REDD has a focus on the forests of the tropics. Unfortunately forest mensuration in most tropical countries has been inadequate to accurately determine forest carbon stocks, much less the effects of land use and changes in land use on them (Houghton et al. 2009; Bryan et al. 2010a). Whilst tropical logging is known to be widespread, the exact areas of tropical forest subject to logging have not been accurately mapped (Asner et al. 2009) or mapped with sufficient regularity to provide adequate data on the areas subject to this activity. Biomass losses due to logging have usually been derived from limited plot data, or derived via various models from estimates of regional biomass and timber extraction volumes (Houghton et al. 2009) and thus encapsulate considerable uncertainty. For these reasons the carbon impact of tropical logging remains an open question, and one that needs to be closed before any international institutional arrangement considers promoting forms of timber extraction as a tool for controlling carbon emissions. Here, we examine the current state of forest carbon research in Papua New Guinea (PNG) to illustrate the problems that can arise by developing forest management policy prematurely from incomplete forest research

    Extreme Differences in Forest Degradation in Borneo: Comparing Practices in Sarawak, Sabah, and Brunei

    No full text
    The Malaysian states of Sabah and Sarawak are global hotspots of forest loss and degradation due to timber and oil palm industries; however, the rates and patterns of change have remained poorly measured by conventional field or satellite approaches. Using 30 m resolution optical imagery acquired since 1990, forest cover and logging roads were mapped throughout Malaysian Borneo and Brunei using the Carnegie Landsat Analysis System. We uncovered ∼364,000 km of roads constructed through the forests of this region. We estimated that in 2009 there were at most 45,400 km(2) of intact forest ecosystems in Malaysian Borneo and Brunei. Critically, we found that nearly 80% of the land surface of Sabah and Sarawak was impacted by previously undocumented, high-impact logging or clearing operations from 1990 to 2009. This contrasted strongly with neighbouring Brunei, where 54% of the land area remained covered by unlogged forest. Overall, only 8% and 3% of land area in Sabah and Sarawak, respectively, was covered by intact forests under designated protected areas. Our assessment shows that very few forest ecosystems remain intact in Sabah or Sarawak, but that Brunei, by largely excluding industrial logging from its borders, has been comparatively successful in protecting its forests.CLASlite is made possible by the Gordon and Betty Moore Foundation, the John D. and Catherine T. MacArthur Foundation, and the Grantham Foundation for the Protection of the Environment. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments

    Get PDF
    Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity

    Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid

    Get PDF
    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria

    Advances in the Direct Study of Carbon Burning in Massive Stars

    Get PDF
    The C12+C12 fusion reaction plays a critical role in the evolution of massive stars and also strongly impacts various explosive astrophysical scenarios. The presence of resonances in this reaction at energies around and below the Coulomb barrier makes it impossible to carry out a simple extrapolation down to the Gamow window-the energy regime relevant to carbon burning in massive stars. The C12+C12 system forms a unique laboratory for challenging the contemporary picture of deep sub-barrier fusion (possible sub-barrier hindrance) and its interplay with nuclear structure (sub-barrier resonances). Here, we show that direct measurements of the C12+C12 fusion cross section may be made into the Gamow window using an advanced particle-gamma coincidence technique. The sensitivity of this technique effectively removes ambiguities in existing measurements made with gamma ray or charged-particle detection alone. The present cross-section data span over 8 orders of magnitude and support the fusion-hindrance model at deep sub-barrier energies

    Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use

    Get PDF
    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù

    Amorphous formulations of indomethacin and griseofulvin prepared by electrospinning

    Get PDF
    Following an array of optimization experiments, two series of electrospun polyvinylpyrrolidone (PVP) fibers were prepared. One set of fibers contained various loadings of indomethacin, known to form stable glasses, and the other griseofulvin (a poor glass former). Drug loadings of up to 33% w/w were achieved. Electron microscopy data showed the fibers largely to comprise smooth and uniform cylinders, with evidence for solvent droplets in some samples. In all cases, the drug was found to exist in the amorphous physical state in the fibers on the basis of X-ray diffraction and differential scanning calorimetry (DSC) measurements. Modulated temperature DSC showed that the relationship between a formulation’s glass transition temperature (<i>T</i><sub>g</sub>) and the drug loading follows the Gordon–Taylor equation, but not the Fox equation. The results of Gordon–Taylor analysis indicated that the drug/polymer interactions were stronger with indomethacin. The interactions between drug and polymer were explored in more detail using molecular modeling simulations and again found to be stronger with indomethacin; the presence of significant intermolecular forces was further confirmed using IR spectroscopy. The amorphous form of both drugs was found to be stable after storage of the fibers for 8 months in a desiccator (relative humidity <25%). Finally, the functional performance of the fibers was studied; in all cases, the drug-loaded fibers released their drug cargo very rapidly, offering accelerated dissolution over the pure drug
    corecore