100 research outputs found

    On the ill-posedness result for the BBM equation

    Get PDF
    We prove that the initial value problem (IVP) for the BBM equation is ill-posed for data in Hs(R), s < 0 in the sense that the ow-map u0 7! u(t) that associates to initial data u0 the solution u cannot be continuous at the origin from Hs(R) to even D0(R) at any _xed t > 0 small enough. This result is sharp.Fundação para a Ciência e a Tecnologia (FCT

    Uniqueness Properties of Solutions to the Benjamin-Ono equation and related models

    Get PDF
    We prove that if u1, u2 are solutions of the Benjamin- Ono equation defined in (x, t) ∈ R × [0, T ] which agree in an open set Ω ⊂ R × [0,T], then u1 ≡ u2. We extend this uniqueness result to a general class of equations of Benjamin-Ono type in both the initial value problem and the initial periodic boundary value problem. This class of 1-dimensional non-local models includes the intermediate long wave equation. Finally, we present a slightly stronger version of our uniqueness results for the Benjamin-Ono equation

    Global well-posedness for the KP-I equation on the background of a non localized solution

    Full text link
    We prove that the Cauchy problem for the KP-I equation is globally well-posed for initial data which are localized perturbations (of arbitrary size) of a non-localized (i.e. not decaying in all directions) traveling wave solution (e.g. the KdV line solitary wave or the Zaitsev solitary waves which are localized in xx and yy periodic or conversely)

    A para-differential renormalization technique for nonlinear dispersive equations

    Full text link
    For \alpha \in (1,2) we prove that the initial-value problem \partial_t u+D^\alpha\partial_x u+\partial_x(u^2/2)=0 on \mathbb{R}_x\times\mathbb{R}_t; u(0)=\phi, is globally well-posed in the space of real-valued L^2-functions. We use a frequency dependent renormalization method to control the strong low-high frequency interactions.Comment: 42 pages, no figure

    Integral representation of the linear Boltzmann operator for granular gas dynamics with applications

    Get PDF
    We investigate the properties of the collision operator associated to the linear Boltzmann equation for dissipative hard-spheres arising in granular gas dynamics. We establish that, as in the case of non-dissipative interactions, the gain collision operator is an integral operator whose kernel is made explicit. One deduces from this result a complete picture of the spectrum of the collision operator in an Hilbert space setting, generalizing results from T. Carleman to granular gases. In the same way, we obtain from this integral representation of the gain operator that the semigroup in L^1(\R \times \R,\d \x \otimes \d\v) associated to the linear Boltzmann equation for dissipative hard spheres is honest generalizing known results from the first author.Comment: 19 pages, to appear in Journal of Statistical Physic

    Local well-posedness and blow up in the energy space for a class of L2 critical dispersion generalized Benjamin-Ono equations

    Get PDF
    We consider a family of dispersion generalized Benjamin-Ono equations (dgBO) which are critical with respect to the L2 norm and interpolate between the critical modified (BO) equation and the critical generalized Korteweg-de Vries equation (gKdV). First, we prove local well-posedness in the energy space for these equations, extending results by Kenig, Ponce and Vega concerning the (gKdV) equations. Second, we address the blow up problem in the spirit of works of Martel and Merle on the critical (gKdV) equation, by studying rigidity properties of the (dgBO) flow in a neighborhood of solitons. We prove that when the model is close to critical (gKdV), solutions of negative energy close to solitons blow up in finite or infinite time in the energy space. The blow up proof requires in particular extensions to (dgBO) of monotonicity results for localized versions of L2 norms by pseudo-differential operator tools.Comment: Submitte

    The phase shift of line solitons for the KP-II equation

    Full text link
    The KP-II equation was derived by [B. B. Kadomtsev and V. I. Petviashvili,Sov. Phys. Dokl. vol.15 (1970), 539-541] to explain stability of line solitary waves of shallow water. Stability of line solitons has been proved by [T. Mizumachi, Mem. of vol. 238 (2015), no.1125] and [T. Mizumachi, Proc. Roy. Soc. Edinburgh Sect. A. vol.148 (2018), 149--198]. It turns out the local phase shift of modulating line solitons are not uniform in the transverse direction. In this paper, we obtain the L∞L^\infty-bound for the local phase shift of modulating line solitons for polynomially localized perturbations

    Catàleg d'actuacions no farmacològiques en salut mental a l'atenció primària

    Get PDF
    Actuacions no farmacològiques; Salut mental; Atenció primàriaNon-pharmacological actions; Mental health; Primary careActuaciones no farmacológicas; Salud mental; Atención primariaAquest catàleg ha estat concebut amb la voluntat de presentar diferents actuacions no farmacològiques que han resultat efectives en algunes situacions per millorar la salut mental i que poden ser accessibles a professionals d’atenció primària. També vol servir de punt de partida per explorar/incorporar actuacions no farmacològiques en la pràctica assistencial de l’atenció primària per ajudar les persones a tenir més autonomia

    Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation

    Full text link
    The aim of this paper is the accurate numerical study of the KP equation. In particular we are concerned with the small dispersion limit of this model, where no comprehensive analytical description exists so far. To this end we first study a similar highly oscillatory regime for asymptotically small solutions, which can be described via the Davey-Stewartson system. In a second step we investigate numerically the small dispersion limit of the KP model in the case of large amplitudes. Similarities and differences to the much better studied Korteweg-de Vries situation are discussed as well as the dependence of the limit on the additional transverse coordinate.Comment: 39 pages, 36 figures (high resolution figures at http://www.mis.mpg.de/preprints/index.html
    • …
    corecore