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INTEGRAL REPRESENTATION OF THE LINEAR BOLTZMANN OPERATOR F OR
GRANULAR GAS DYNAMICS WITH APPLICATIONS

L. ARLOTTI & B. LODS

ABSTRACT. We investigate the properties of the collision operatorQ associated to the linear Boltz-
mann equation fordissipativehard-spheres arising in granular gas dynamics. We establish that, as
in the case of non–dissipative interactions, the gain collision operator is an integral operator whose
kernel is made explicit. One deduces from this result a complete picture of the spectrum ofQ in an
Hilbert space setting, generalizing results from T. Carleman [6] to granular gases. In the same way,
we obtain from this integral representation ofQ+ that the semigroup inL1(R3 ×R3, dx ⊗ dv) asso-
ciated to the linear Boltzmann equation for dissipative hard spheres ishonestgeneralizing known
results from [1].
KEYWORDS. Granular gas dynamics, linear Boltzmann equation, detailed balance law, spectral
theory,C0-semigroup.

1. INTRODUCTION

We deal in this paper with the linear Boltzmann equation fordissipative interactionsmodeling
the evolution of a granular gas, undergoinginelastic collisionswith its underlying medium. Actu-
ally, we shall see in the sequel that there is no contrast between the scattering theory of granular
gases and that of classical(elastic)gases. This may seem quite surprising if one has in mind the
fundamental differences that may be emphasized between thenonlinear kinetic theoryof granular
gases and that of classical gases, as briefly recalled in the next lines.

1.1. Granular gas dynamics: linear and nonlinear models.Let us begin by recalling the gen-
eral features of the kinetic description of granular gas dynamics that can be recovered from the
monograph [4] or the more mathematically oriented survey [23]. If f (x, v, t) denotes the distribu-
tion function of granular particles with positionx ∈ R3 and velocityv ∈ R3 at timet > 0, then the
evolution of f (x, v, t) is governed by the following generalization of Boltzmann equation

∂t f (x, v, t) + v · ∇x f (x, v, t) = C( f )(x, v, t), (1.1)

with initial condition f (x, v, 0) = f0(x, v) ∈ L1(R3 ×R3, dx⊗ dv), where the right–hand sideC( f )
models the collision phenomena and depends on the phenomenon we describe.

In the nonlinear description, the collision operatorC( f ) =: B[ f, f ] is a quadratic operator
modeling the binary collision phenomena between self-interacting particles. Forhard–spheres
interactions, it reads

B[ f, f ](v) =

∫

R3×S2

|q · n|
[

1

ǫ2
f (x, v⋆, t) f (x,w⋆, t) − f (x, v, t) f (x,w, t)

]

dwdn,

1
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whereq is the relative velocity,q = v − w. The microscopic velocities(v⋆,w⋆) are the pre–
collisional velocities of the so–called inverse collision, which results in(v,w) as post-collisional
velocities. The main peculiarity of the kinetic description of granular gas is the inelastic character
of the microscopic collision mechanism which induces thatpart of the total kinetic energy is
dissipated. This energy dissipation might be due to the roughness of thesurface or just to a non-
perfect restitution and is measured through a restitution coefficient0 < ǫ < 1 (which we assume
here to be constant for simplicity, see Remark 1.2). As a consequence, the collision phenomenon
is anon microreversible process. Generally, we assume that the energy dissipation does not affect
the conservation of momentum. Therefore, in the homogeneous setting, i.e. whenf0(x, v) = f0(v)
is independent of the position, the number density of the gasis constant while the bulk velocity is
conserved. However, the temperature of the gas

ϑ(t) =
1

3

∫

R3

|v|2 f (t, v)dv

continuously decreases(cooling of granular gas). As a consequence, the stationary state of the
inelastic collision operatorB is a given Dirac mass. However, the homogeneous Boltzmann equa-
tion for granular gases exhibits self–similar solution (homogeneous cooling state) [8, 17]. Note
the important contrast with the classical kinetic theory, i.e. whenǫ = 1, for which it is well–known
that the steady state of the collision operator is a Maxwellian distribution.

The linear Boltzmann equation for dissipative interactionsconcerns dilute particles (test
particles with negligible mutual interactions) immersed in a fluid at thermal equilibrium [14, 16,
22]. The total kinetic energy is dissipated when the dilute particles collide with particles of the host
fluid. Such physical models are well-suited to the study of the dynamics of a mixture of impurities
in a gas [9, 5] for which the background is in thermodynamic equilibrium and that the polluting
particles are sufficiently few. We refer the reader to [11] and the survey [10] for more details on
the theory of granular gaseous mixtures. Assuming the fluid at thermal equilibrium and neglecting
the mutual interactions of both the test and dilute particles, the collision operatorC( f ) = Q( f ) is
a linear scattering operatorgiven by

Q( f ) = B[ f,M1] =

∫

R3×S2

|q · n|
[

1

ǫ2
f (x, v⋆, t)M1(w⋆) − f (x, v, t)M1(w)

]

dwdn (1.2)

whereM1 stands for the distribution function of the host fluid. Note that in such a scattering
model, the microscopic masses of the dilute particlesm and that of the host particlesm1 can be
different. We will assume throughout this paper that the distribution function of the host fluid is a
given normalized Maxwellian function:

M1(v) =
(

m1

2πϑ1

)3/2

exp

{

−
m1(v − u1)2

2ϑ1

}

, v ∈ R3,

whereu1 ∈ R
3 is the given bulk velocity andϑ1 > 0 is the given effective temperature of the host

fluid. It can be shown in this case that the number density of the dilute gas is the unique conserved
macroscopic quantity (as in the elastic case). The temperature is still not conserved but it remains
bounded away from zero, which prevents the solution to the linear Boltzmann equation to converge
towards a Dirac mass. This strongly contrasts to the nonlinear description and suggests that the
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linear scattering model associated with granular gases does not contrast too much with the one
associated with classical gases.

The first mathematical result in this direction is the following one according to which, as in the
classical case, the unique steady state ofQ remains Gaussian. The fact that the linear Boltzmann
equation still possesses a stationary Maxwellian velocitydistribution was first obtained in [16] and
we refer to [14] for a complete proof (existence and uniqueness) for hard-spheres model (see also
[22] for a version of this result for Maxwell molecules) :

Theorem 1.1. The Maxwellian velocity distribution:

M(v) =
(

m

2πϑ#

)3/2

exp

{

−
m(v − u1)2

2ϑ#

}

v ∈ R3,

with ϑ#
=

(1 + ǫ)m

2m + (3 + ǫ)m1
ϑ1 is the unique equilibrium state ofQ with unit mass.

Remark 1.2. Note that, if one does not assume the restitution coefficientǫ to be constant (see
[4] for the general expression of non-constant restitution coefficient ǫ = ǫ(q) in the case, e.g., of
visco-elastic spheres) then the nature of the equilibrium state ofQ is still an open question: it is
not known whether such a steady state is a Maxwellian or not. Consequently, it is still not clear
that linear inelastic scattering models behave like elastic ones. For this reason, we shall restrict
here our study of the linear Boltzmann equation to aconstant restitution coefficient. We also
point out that, if the distribution function of the host fluidM1 is not of gaussian type, the explicit
expression of the equilibrium state ofQ is an open question to our knowledge.

The existence and uniqueness of such an equilibrium state allows to establish a linear version
of the famousH–Theorem. Precisely, for anyconvexC1–functionΦ : R+ → R, one can define
the associated entropy functional as

HΦ( f |M) =

∫

R3

M(v)Φ

(

f (v)

M(v)

)

dv, (1.3)

Theorem 1.3(H–Theorem [14, 20]). Let f0(v) be a space homogeneous distribution function with
unit mass and finite entropy, i.e.HΦ( f0|M) < ∞. Then,

d

dt
HΦ( f (t)|M) 6 0 (t > 0), (1.4)

where f (t) stands for the (unique) solution to(1.1) in L1(R3, dv).

Note that such a result is valid for any scattering operator with positive kernel and positive
equilibrium [20]. As an important consequence, it can be shown by suitable compactness argu-
ments that any solution to the Boltzmann equation (1.1) (with unit mass) converges towards the
Maxwellian equilibriumM. Note also that, for the nonlinear Boltzmann equation for dissipative
interactions, the temperature is a trivial Lyapunov functional leading to the convergence of any so-
lution towards a delta mass. However, the construction of a Lyapunov functional in the self-similar
variables allowing relaxation towards the homogeneous cooling state is still an open question (see,
e.g. [17] for related problems).
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To summarize, the steady state of the linear collision operator for dissipative interactions has
the same nature (a Maxwellian distribution) as the one corresponding to non–dissipative interac-
tions. Moreover, as in the classical case, by virtue of theH–Theorem, such a steady state attracts
any solution to the space homogeneous Boltzmann equation (1.1). This seems to indicate that
most of the properties of the linear Boltzmann equation for elastic interactions remain valid for
inelastic scattering models.It is the main subject of this paper to make precise and confirmsuch
an indication and the key ingredient will be the derivation of an integral representation of the gain
part of the collision operator.

1.2. Main results. The main concern of our paper is the derivation of a suitable representation of
the gain part of the collision operatorQ as an integral operator withexplicit kernel. Precisely, the
linear collision operatorQ can be split intoQ( f ) = Q+( f ) −Q−( f ), where the gain part is

Q+( f )(v) = ǫ−2

∫

R3×S2

|q · n| f (v⋆)M1(w⋆)dwdn

while

Q−( f )(v) =

∫

R3×S2

|q · n| f (v)M1(w)dwdn = σ(v) f (v)

where the collision frequencyσ(v) is given byσ(v) =
∫

R3×S2 |q · n|M1(w)dwdn. It is well-known
that, for non–dissipative interactions, i.e. whenǫ = 1, the gain partQ+ can be written as an
integral operator with explicit kernel [6, 15] (see also [12, 7] for similar results for thelinearized
Boltzmann equation). We prove that such a representation isstill valid in the dissipative case:

Theorem 1.4. If f > 0 is such thatσ(v) f (v) ∈ L1(R3, dv), then

Q+( f )(v) =

∫

R3

k(v, v′) f (v′)dv′

where the integral kernelk(v, v′) can be made explicit (see(2.2)).

Actually, most important is the fact that the integral kernel k(v, v′) turns out to be very similar
to that obtained in the classical case (see for instance [15,6]), the only changes standing in some
explicit numerical constants. Moreover, as we shall see, the kernelk(v, v′) and the Maxwellian
distributionM satisfy the followingdetailed balance law:

k(v, v′)M(v′) = k(v′, v)M(v), v, v′ ∈ R3,

that allows us to recover Theorem 1.1 in a direct way. Recall that, in [14], the Gaussian nature of
the steady state ofQ was obtained by replacingQ by its grazing collision limit.

We derive from these two results some important consequences on the linear Boltzmann equa-
tion (1.1) withC = Q. The applications are dealing with the space dependent version of (1.1) as
well as with the space homogeneous version of it. The first oneconcerns the spectral properties of
the Boltzmann collision operator in its natural Hilbert space setting.
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1.3. Spectral properties of the Boltzmann operator inL2(M−1). Applying the aboveH–Theo-
rem 1.3 with the quadratic convex functionΦ(x) = (x− 1)2, one sees that a natural function space
for the study of thehomogeneous linear Boltzmann equationis the weighted spaceL2(M−1).
Now, from Theorem 1.4, it is possible to prove that the gain collision operatorQ+ is compactin
L2(M−1). This compactness result has important consequences on thestructure of the spectrum
of Q as an operator inL2(M−1). Precisely, from Weyl’s Theorem, the spectrum ofQ in this space
is given by the (essential) range of the collision frequencyσ(·) and of isolated eigenvalues with
finite algebraic multiplicities. Sinceλ = 0 is a simple eigenvalue ofQ (its associated null space is
spanned byM), this leads to the existence of a positive spectral gap. In turns, one proves that any
solution to the space-homogoneous linear Boltzmann equation (1.1) converges at an exponential
rate towards the equilibrium.These spectral results are technical generalizations of some of the
fundamental results of T. Carleman[6], but are new in the context of granular gas dynamics.

1.4. Honest solutions for hard–spheres model.It is easily seen that, for any nonnegativef ,
∫

R3

Q+( f )(v)dv =

∫

R3

σ(v) f (v)dv, (1.5)

i.e. the collision operatorQ is conservative.Then, formally, any nonnegative solutionf (x, v, t) to
(1.1) (withC = Q) should satisfy the followingmass conservation equation:

∫

R3×R3

f (x, v, t)dxdv =

∫

R3×R3

f (x, v, 0)dxdv, ∀t > 0. (1.6)

It is the main concern of Section 4 to prove that such a formal mass conservation property holds
true for any nonnegative initial datumf (x, v, 0) ∈ L1(R3 ×R3). As well documented in the mono-
graph [3], this is strongly related to the honesty of theC0-semigroup governing Eq. (1.1). More
precisely, if we denote byT0 the streaming operator:

D(T0) = { f ∈ X , v · ∇x f ∈ X}, T0 f = −v · ∇x f,

it is not difficult to see that there exists some extensionG of T0+Q that generates aC0-semigroup
of contractions(Z(t))t>0 in X = L1(R3 × R3). According to the so–called ”sub-stochastic pertur-
bation” theory, developed in [1, 3, 25], it can be proved that

∫

R3×R3

Z(t) f (x, v)dxdv =

∫

R3×R3

f (x, v)dxdv, ∀ f ∈ X, f > 0

if and only if G is the closure of the full transport operator:G = T0 +Q.We show in Section 4 that
the latter holds. To do so, we shall use the integral representation (Theorem 1.4) in order to apply
some of the results of [1] (see also [3, Chapter 10]) dealing with the classical linear Boltzmann
equation.

1.5. Organization of the paper. We derive in Section 2 the integral representation ofQ+ (The-
orem 2.1) as well as some of its immediate consequences concerning the explicit expression of
the collision frequency. We also recover Theorem 1.1 through a detailed balance law. Section 3 is
devoted to the study of the collision operatorQ in the narrow spaceL2(M−1(v)dv) and its spectral
consequences. In Section 4 we apply the results of Section 2 as well as some known facts about
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the classical linear Boltzmann equation [1, 3] to the honesty of the solutions to the Boltzmann
equation for dissipative hard-spheres.

2. INTEGRAL REPRESENTATION OF THE GAIN OPERATOR

Let us consider the gain operator for dissipative hard–spheres:

Q+( f )(v) = ǫ−2

∫

R3×S2

|q · n| f (v⋆)M1(w⋆)dwdn

and letσ(v) be the corresponding collision frequency:

σ(v) =

∫

R3×S2

|q · n|M1(w)dwdn, v ∈ R3.

Recall thatM1 is a Maxwellian distribution function with bulk velocityu1 and effective tem-
peratureϑ1. We recall here the general microscopic description of the pre-collisional velocities
(v⋆,w⋆) which result in(v,w) after collision. For a constant restitution coefficient0 < ǫ < 1, one
has [4, 23]



























v⋆ = v − 2α
1 − β

1 − 2β
[q · n]n,

w⋆ = w + 2(1 − α)
1 − β

1 − 2β
[q · n]n;

whereq = v − w, α is the mass ratio andβ denotes the inelasticity parameter

α =
m1

m +m1
, β =

1 − ǫ

2
.

We show in this section that, as it occurs for the classical Boltzmann equation,Q+ turns out
to be an integral operator with explicit kernel. The proof ofsuch a result is based on well-known
tools from the linear elastic scattering theory [6, 12, 15] while, in the dissipative case, similar
calculations have been performed to derive a Carleman representation of the nonlinear Boltzmann
operator in [17].

Theorem 2.1(Integral representation of Q+). For any f ∈ L1(R3 ×R3, dx ⊗ σ(v)dv),

Q+ f (x, v) =
1

2ǫ2γ2

∫

R3

f (x, v′)k(v, v′)dv′, (2.1)

where

k(v, v′) =
(

m1

2πϑ1

)1/2

|v − v′|−1 exp















−
m1

8ϑ1

(

(1 + µ)|v − v′| +
|v − u1|

2 − |v′ − u1|
2

|v − v′|

)2














(2.2)

with µ = −
2α(1 − β) − 1

α(1 − β)
> 0 andγ = α

1 − β

1 − 2β
.
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Proof. The local (inx) nature ofQ+ is obvious and we can restrict ourselves to prove the result
for a function f ∈ L1(R3, σ(v)dv) that does not depend onx. Setγ = α

1−β
1−2β andγ = (1 − α)

1−β
1−2β

so that
v⋆ = v − 2γ[q · n]n and w⋆ = w + 2γ [q · n]n.

The following formula, for smoothϕ:
∫

S+

(q · n)ϕ
(

(q · n)n
)

dn =
|q|

4

∫

S2

ϕ

(

q − |q|σ

2

)

dσ =
1

2

∫

R3

δ(2x · q + x2)ϕ(−x/2)dx.

applied to
ϕ(x) = f

(

v − 2γx
)

M1
(

w + 2γx
)

yields

Q+ f (v) = ǫ−2

∫

R3×R3

δ(2x · q + x2) f (v + γx)M1(w − γx)dwdx.

The change of variablesx 7→ v′ = v + γx leads to

Q+ f (v) = ǫ−2γ−3

∫

R3×R3

δ(2γ−1(v′ − v) · q + γ−2|v′ − v|2) f (v′)M1(w −
γ

γ
(v′ − v))dwdv′.

Now, keepingv andv′ fixed, we perform the change of variablesw 7→ w′ = w−
γ

γ
(v′ − v), which

leads to

Q+ f (v) = ǫ−2γ−3

∫

R3×R3

δ

(

2γ−1(v′ − v) · [v − w′ −
γ

γ
(v′ − v)] + γ−2|v′ − v|2

)

×

× f (v′)M1(w′)dw′dv′.

Writing w′ = v + λ1n + V2 with λ1 = (w′ − v) · n ∈ R, n = (v′ − v)/|v′ − v| andV2 · n = 0, we
get, noting thatdw′ = dV2dλ1,

Q+ f (v) = ǫ−2γ−3

∫

R3

f (v′)dv′
∫

R

dλ1

∫

V2·n=0

M1(v + V2 + λ1n)dV2×

× δ
(

γ−2|v′ − v|2 − 2γγ−2|v′ − v|2 − 2γ−1λ1|v
′ − v|

)

.

Thanks to the change of variablesλ1 7→ 2γ−1|v′ − v|λ1, one can evaluate the Dirac mass as
∫

R

δ
(

γ−2|v′ − v|2 − 2γγ−2|v′ − v|2 − 2γ−1λ1|v
′ − v|

)

M1(v + V2 + λ1n)dλ1

=
γ

2|v′ − v|
M1

(

v + V2 +
1 − 2γ

2γ
(v′ − v)

)

where we used thatn = (v′ − v)/|v′ − v|. Consequently,

Q+ f (v) =
1

2ǫ2γ2

∫

R3

k(v, v′) f (v′)dv′
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where

k(v, v′) =
1

|v − v′|

∫

V2·(v′−v)=0

M1

(

v + V2 +
1 − 2γ

2γ
(v′ − v)

)

dV2.

It remains now to explicitk(v, v′). We will use the approach of [15]. Let us assumev, v′ to be
fixed. LetP be the hyperplan orthogonal to(v′ − v). For anyV2 ∈ P, set

z = v +
1 − 2γ

2γ
(v′ − v) + V2 − u1

so that

k(v, v′) =
(̺1

π

)3/2

|v − v′|−1

∫

V2∈P
exp{−̺1z2}dV2.

where̺1 =
m1

2ϑ1
. Denoting for simplicityu =

v + v′

2
− u1 andµ = −

1 − 2γ

γ
, one has

z2
=

(

u +
v − v′

2
+
µ

2
(v − v′) + V2

)2

= |u + V2|
2
+

(1 + µ)2

4
|v − v′|2 +

1 + µ

2
(|v − u1|

2 − |v′ − u1|
2)

where we used the fact thatV2 is orthogonal to(v′ − v). Splittingu as

u = u0 + u⊥

whereu0 is parallel tov − v′ while u⊥ is orthogonal tov − v′ (i.e. u⊥ ∈ P), we see that

|u + V2|
2
= |u0|

2
+ |u⊥ + V2|

2 and |u0|
2
=

[

|v − u1|
2 − |v′ − u1|

2
]2

4|v − v′|2
,

so that

k(v, v′) = |v − v′|−1
(̺1

π

)3/2
∫

P
exp

(

−̺1|u⊥ + V2|
2
)

dV2

exp



















−
̺1

4



















(1 + µ)2|v − v′|2 + 2(1 + µ)(|v − u1|
2 − |v′ − u1|

2) +

[

|v − u1|
2 − |v′ − u1|

2
]2

|v − v′|2





































.

Finally, sinceu⊥ ∈ P,
∫

P
exp

(

−̺1|u⊥ + V2|
2
)

dV2 =

∫

R2

exp(−̺1x2)dx =
π

̺1
,

one obtains the desired expression fork(v, v′). �

The very important fact to be noticed out is that the expression of k(v, v′) is very similar to
that one obtains in the elastic case [15], the only change being the expression of the constantµ.
In particular, in the elastic caseǫ = 1, we recover the expression of the kernel obtained in [6] for
particles of same mass (i.e.m = m1) and in [15] for particles with different masses.
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Another fundamental property of the kernelk(v, v′) is that it allows us to recover the steady
state ofQ through somemicroscopic detailed balance law. Precisely,

Theorem 2.2. With the notations of the Theorem 2.1, the followingdetailed balance law:

k(v, v′) exp
{

−
m1

2ϑ1
(1 + µ)(v′ − u1)2

}

= k(v′, v) exp
{

−
m1

2ϑ1
(1 + µ)(v − u1)2

}

, (2.3)

holds for anyv, v′ ∈ R3. As a consequence, the Maxwellian velocity distribution:

M(v) =
(

m

2πϑ#

)3/2

exp

{

−
m(v − u1)2

2ϑ#

}

v ∈ R3,

with ϑ#
=

(1 − α)(1 − β)

1 − α(1 − β)
ϑ1 is the unique equilibrium state ofQ with unit mass.

Proof. According to Eq. (2.2), it is easily seen that

k(v′, v) = k(v, v′) exp
{

m1

2ϑ1
(1 + µ)

(

|v − u1|
2 − |v′ − u1|

2
)

}

, v, v′ ∈ R3

which is nothing but (2.3). Now, writingm1

2ϑ1
(1+µ) = m

2ϑ♯
, straightforward calculations lead to the

desired expression for the equilibrium temperatureϑ♯. The fact thatM is an equilibrium solution
with unit mass follows then from the fact that

Q(M)(v) =

∫

R3

k(v, v′)M(v′)dv′ − σ(v)M(v) =

∫

R3

[k(v, v′)M(v′) − k(v′, v)M(v)] dv′

and from the detailed balance law (2.3). To prove that the steady state is unique, we adopt the
stategy of [21, Theorem 1]. Precisely, consider the equation

σ(v) f (v) = Q+ f (v), ∀v ∈ R3 (2.4)

which admits at least the solutionf = M. Sinceσ(v) does not vanish, any solutionf to (2.4) is
such that

f (v) =
1

σ(v)
Q+( f )(v), ∀v ∈ R3.

SinceQ+ is an integral operator withnonnegativekernel, it is clear thatσ(v)| f (v)| 6 Q+(| f |)(v)
for anyv ∈ R3. Now, from the positivity of bothσ andQ+, one sees that the conservation of mass
(1.5) reads:

‖σ f ‖X = ‖σ | f | ‖X = ‖Q
+(| f |)‖X.

This shows that, actually,|Q+( f )(v)| = σ(v)| f (v)| = Q+(| f |)(v) for anyv ∈ R3. Again, sinceQ+ is
a positive operator, one obtains that

f = ±| f |.

Now, assume that (2.4) admits two solutionsf1, f2 with
∫

R3 f1(v)dv =
∫

R3 f2(v)dv = 1. Then,
f1 − f2 is again a solution to (2.4) so that,f1 − f2 = ±| f1 − f2|. Thus,

±

∫

R3

| f1(v) − f2(v)|dv =

∫

R3

f1(v)dv −

∫

R3

f2(v)dv = 0

and the uniqueness follows. �
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The above result allows to derive the explicit expression ofthe collision frequencyσ(v):

Corollary 2.3. The collision frequencyσ(v) for dissipative hard–spheres interactions is given by

σ(v) =
2π

(2 + µ)2

√

m1

2πϑ1

{

4ϑ1

m1
exp

(

−
m1

2ϑ1
|v − u1|

2
)

+

(

2|v − u1| +
2ϑ1

m1|v − u1|

)

∫ 2|v−u1 |

0

exp
(

−
m1

8ϑ1
t2
)

dt

}

. (2.5)

Consequently, there exist positive constantsν0, ν1 such that

ν0(1 + |v − u1|) 6 σ(v) 6 ν1(1 + |v − u1|), ∀v ∈ R3.

Proof. SetC =

√

m1

2πϑ1
. Noting thatσ(v) =

∫

R3 k(v′, v)dv′ for any v ∈ R3, one has, with the

change of variablez = v′ − v, in a polar coordinate system in whichv lies on the third axis

σ(v) = C

∫

R3

exp















−
m1

8ϑ1

(

(1 + µ)|z| −
|v − u1|

2 − |z + v − u1|
2

|z|

)2














|z|−1dz

= 2πC

∫ ∞

0

d̺

∫ π

0

̺ exp
{

−
m1

8ϑ1

(

(2 + µ)̺ + 2|v − u1| cosϕ
)2
}

sinϕ dϕ.

The computation of this last integral leads to the desired expression forσ(v). The estimates are
then straightforward [15]. �

3. APPLICATION TO THEBOLTZMANN OPERATOR IN L2(M−1).

We investigate in this section the properties of the Boltzmann operatorQ in the weighted space

H = L2(R3;M−1(v)dv).

We shall denote by〈·, ·〉H the inner product inH . The introduction of such an Hilbert space setting
is motivated by the application of theH-Theorem 1.3 with the convex functionΦ(x) = (x − 1)2.
In this case, one sees that, iff0 > 0 is a space homogeneous initial distribution such that

∫

R3

f0(v)dv = 1,

∫

R3

| f0(v)|2M−1(v)dv < ∞,

then any solutionf (t, v) to the space homogeneous equation

∂t f (t, v) = Q( f )(t, v), f (0, v) = f0(v) ∈ H , (3.1)

satisfies the following estimate:

d

dt

∫

R3

∣

∣

∣ f (t, v) −M(v)
∣

∣

∣

2
M(v)−1dv 6 0, t > 0.
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In other words, the mappingt 7−→
∥

∥

∥ f (t, ·) −M
∥

∥

∥

H
is nonincreasing. For these reasons, the study

of the properties of the collision operatorQ in H is of particular relevance for the asymptotic
behavior of the solution

∂t f (t, v) = Q( f )(t, v), f (0, v) ∈ H . (3.2)

The material of this section borrows some techniques already employed by T. Carleman [6] in the
study of non–dissipative gas dynamics (see also, e.g. [7] or[12] for similar results in the context
of the linearizedBoltzmann equation). LetL be the realization of the operatorQ inH , i.e.

D(L) =

{

f ∈ H ;

∫

R

| f (v)|2σ(v)M−1(v)dv < ∞

}

.

and, for any f ∈ D(L), L f (v) = Q( f )(v) is given by (1.2). As previously, one can use the
following splitting ofL as a gain operator and a loss (multiplication) operator,L = L+−L− with

L+( f )(v) =

∫

R3

k(v, v′) f (v′)dv′ and L−( f ) = σ(v) f (v), f ∈ D(L).

We shall show, as in the classical case, thatL+ is actually a bounded operator inH . Precisely, let
J define the natural bijection operator fromL2(R3, dv) toH :











J : L2(R3, dv) −→ H

f 7−→J f (v) =M1/2(v) f (v)

It is clear thatJ is a bounded bijective operator whose inverse is given by

J −1g(v) =M−1/2(v)g(v) ∈ L2(R3, dv), ∀g ∈ H .

Now, let us define

G(v, v′) =M−1/2(v)k(v, v′)M1/2(v′), v, v′ ∈ R3,

i.e.

G(v, v′) =
(

m1

2πϑ1

)1/2

|v − v′|−1 exp

{

−
m1

8ϑ1

(

(1 + µ)2|v − v′|2 +
(|v − u1|

2 − |v′ − u1|
2)2

|v − v′|2

)}

.

(3.3)
From the detailed balance law (2.3), one easily checks thatG(v, v′) = G(v′, v) for anyv, v′ ∈ R3.
Therefore, definingG as the integral operator inL2(R3, dv) with kernelG(v, v′), i.e.

G f (v) =

∫

R3

G(v, v′) f (v′)dv′,

one can prove the following:

Proposition 3.1. G is a bounded symmetric operator inL2(R3, dv) andL+ =JGJ −1. Conse-
quently,L+ is a bounded symmetric operator inH .
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Proof. It is clear thatG is symmetric sinceG(v, v′) = G(v′, v). Now, to prove the boundedness of
G, one adopts a strategy already used in the non–dissipative case by T. Carleman [6, p. 75] and
shows easily that

C := sup
v∈R3

∫

R3

G(v, v′)dv′ < ∞.

SinceG(·, ·) is symmetric, one also hassupv′∈R3

∫

R3 G(v, v′)dv = C < ∞. Denoting by〈·, ·〉 the
usual inner product ofL2(R3, dv), one deduces from Cauchy-Schwarz identity,

〈G f, g〉 6
C

2

(∫

R3

| f (v)|2dv +

∫

R3

|g(v′)|2dv′
)

, ∀ f, g ∈ L2(R3, dv),

which leads to the boundedness ofG. Now, sinceG(v, v′) = M−1/2(v)k(v, v′)M1/2(v′) for any
v, v′ ∈ R3, one gets easily thatL+ =JGJ −1 and the conclusion follows. �

In Proposition 3.1, we proved that the gain operatorL+ is bounded inH , i.e. L+ ∈ B(H ).
Actually, we have much better and it is possible, as in the non–dissipative case, to prove thatL+

is a compact operator inH . Precisely, the following lemma is a direct consequence of Theorem
2.1 and similar calculations valid for the non-dissipativecase [6, p. 70–75]. However, we give a
detailed proof of it since the known similar results by T. Carleman are all dealing with the case
m = m1 andǫ = 1. It has to be checked that taking account the parametersm , m1 andǫ < 1
does not lead to supplementary difficulty (see Remark 3.8 where the role ofǫ , 1 does not allow
to adaptmutatis mutandisa result valid in the elastic case).

Lemma 3.2. For any0 < p < 3 and anyq > 0, there existsC(p, q) > 0 such that
∫

R3

|G(v, v′)|p
dv′

(1 + |v′ − u1|)q
6

C(p, q)

(1 + |v − u1|)q+1
, ∀v ∈ R3.

Proof. The proof is a technical generalization of a similar result due to T. Carleman [6] in the
classical case (i.e. whenm = m1 andǫ = 1). Let us fix0 < p < 3 andq > 0 and set

I(v) =

∫

R3

|G(v, v′)|p
dv′

(1 + |v′ − u1|)q
.

Then, one sees easily that

I(v) = 2π
(

m1

2πϑ1

)p/2
∫ π

0

sinϕdϕ

∫ ∞

0

̺2−p
exp

{

−
m1p

8ϑ1

(

(1 + µ)2̺2
+ (̺ + 2|v − u1| cosϕ)2

)

}

(

1 +
√

̺2 + |v − u1|2 + 2̺|v − u1| cosϕ
)q d̺.

Note that, since0 < p < 3,

sup
v∈R3

I(v) 6 4π
(

m1

2πϑ1

)p/2
∫ ∞

0

̺2−p exp
{

−
m1p

8ϑ1
(1 + µ)2̺2

}

d̺ < ∞. (3.4)

Performing the change of variablex = ̺/|v − u1| + 2 cosϕ, y = ̺/|v − u1|, one has(x, y) ∈ Ω
where

Ω = {(x, y) ∈ R2 ; y > 0, |x − y| 6 2}
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and

I(v) =
(

m1

2πϑ1

)p/2

π|v−u1|
3−p

∫

Ω

exp

{

−
m1p|v − u1|

2

8ϑ1

(

(1 + µ)2y2
+ x2

)

}

dxdy

yp−2
(

1 + |v − u1|
√

1 + xy
)q .

We splitΩ intoΩ = Ω1 ∪Ω2 whereΩ1 is the half-ellipse

Ω1 = {(x, y) ∈ R2 : y > 0, (1 + µ)2y2
+ x2 < 1/4} while Ω2 = Ω \Ω1.

Note that, since1 + µ > 1, one hasΩ1 ⊂ Ω. One defines correspondinglyI1(v) andI2(v) as the
above integral overΩ1 andΩ2 respectively. One notes first that, if(x, y) ∈ Ω1 thenxy > − 1

8(1+µ)

so that

I1(v) 6
(

m1

2πϑ1

)p/2 π|v − u1|
3−p

(1 + a|v − u1|)q

∫

Ω1

exp

{

−
m1p|v − u1|

2

8ϑ1

(

(1 + µ)2y2
+ x2

)

}

dxdy

yp−2

wherea =
√

1 − 1
8(1+µ) , 0 < a < 1. Letting R =

(

m1p
8ϑ1

)1/2
and settingt = R|v − u1|x, u =

R(1+µ)|v−u1|y, it is easy to check that−R|v−u1|/2 6 t 6 R|v−u1|/2,while 0 6 u 6 R|v−u1|/2,
so that

I1(v) 6
(

m1

2πϑ1

)p/2 πRp−4(1 + µ)p−3

|v − u1|(1 + a|v − u1|)q

∫

R

dt

∫ ∞

0

exp{−(t2
+ u2)}

up−2
du.

Thus, there exists a constantC1(p, q) > 0 such that

I1(v) 6
C1(p, q)

|v − u1|(1 + a|v − u1|)q
, ∀v ∈ R3. (3.5)

Let us now deal withI2(v). Arguing as above,

I2(v) =
(

m1

2πϑ1

)p/2

π|v − u1|
3−p

∫

Ω2

exp

{

−
R2|v − u1|

2

2

(

(1 + µ)2y2
+ x2

)

}

×

×

exp
{

−
R2|v−u1|

2

2

(

(1 + µ)2y2
+ x2

)

}

yp−2
(

1 + |v − u1|
√

1 + xy
)q dxdy.

Clearly, since(1 + µ)2y2
+ x2 > 1/4 for any(x, y) ∈ Ω2, then

I2(v) 6
(

m1

2πϑ1

)p/2

π|v − u1|
3−p

∫

Ω2

exp

(

−
R2|v − u1|

2

8

)

exp

{

−
R2|v − u1|

2

2

(

(1 + µ)2y2
+ x2

)

}

dxdy

yp−2

6

(

m1

2πϑ1

)p/2

π|v − u1|
3−p exp

(

−
R2|v − u1|

2

8

) ∫ ∞

0

exp

(

−
R2|v − u1|

2

2
(1 + µ)2y2

)

dy

yp−2

∫ y+2

y−2

dx.

Hence, there is some constantC2(p, q) such that

I2(v) 6 C2(p, q) exp

(

−
R2|v − u1|

2

8

)

, v ∈ R3. (3.6)
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Combining (3.5) and (3.6), one sees that

I(v) 6
C1(p, q)

|v − u1|(1 + a|v − u1|)q
+ C2(p, q) exp

(

−
R2|v − u1|

2

8

)

, v ∈ R3.

According to (3.4),lim sup|v−u1 |→0 I(v) < ∞, from which we get the conclusion. �

Remark 3.3. Note that the above Lemma can be extended to more general collision kernels (in-
cluding long-range interactions) following the lines of the recent results[18] dealing with the
elastic case.

From the above Lemma, one has the following compactness result:

Proposition 3.4. G is compact inL2(R3, dv). Consequently,L+ is a compact operator inH .

Proof. Applying arguments already used in [6], the above Lemma implies that the third iterate of
G is an Hilbert–Schmidt operator inL2(R3, dv), i.e. the kernel ofG3 is square summable over
R3 ×R3. The compactness ofG follows then from standard arguments and that ofL+ is deduced
from the identityL+ =JGJ −1 (see Proposition 3.1). �

The following, which generalizes a known result from classical kinetic theory, proves thatL is
a negative symmetric operator inH :

Proposition 3.5. The operator(L,D(L)) is a negative self–adjoint operator ofH . Precisely,

〈L f, f 〉H = −
1

2

∫

R3×R3

k(v, v′)M(v′)
[

M−1(v) f (v) − f (v′)M−1(v′)
]2

dvdv′ 6 0

for any f ∈ D(L).

Proof. The fact that(L,D(L)) is self-adjoint is a direct consequence of Proposition 3.1 sinceL−

is clearly symmetric. Now, it is a classical feature, from the detailed balance law (2.3), that

〈L f, f 〉H =

∫

R3×R3

k(v, v′)M(v′)
[

M−1(v′) f (v′) − f (v)M−1(v)
]

f (v)M−1(v)dvdv′.

Exchangingv andv′ and using again the detailed balance law (2.3), one sees that

〈L f, f 〉H =

∫

R3×R3

k(v, v′)M(v′)
[

M−1(v) f (v) − f (v′)M−1(v′)
]

f (v′)M−1(v′)dvdv′

so that, taking the mean of the two quantities,

〈L f, f 〉H = −
1

2

∫

R3×R3

k(v, v′)M(v′)
[

M−1(v) f (v) − f (v′)M−1(v′)
]2

dvdv′ 6 0

which ends the proof. �

Remark 3.6. From the above result, the spectrumS(L) ofL lies inR−, i.e.S(L) ⊂ (−∞, 0]. It
is clear thatλ = 0 lies inS(L). Precisely0 is a simple eigenvalue ofL sinceM is the unique (up
to a multiplication factor) steady state ofL.

Combining the above results with Proposition 3.1 leads to a precise description of the spectrum
of L:



INTEGRAL REPRESENTATION OF THE LINEAR BOLTZMANN OPERATOR FOR GRANULAR GAS 15

FIGURE 1. Spectrum of the collision operatorQ inH .

Theorem 3.7. The spectrum ofL (as an operator inH ) consists of the spectrum of−L− and of,
at most, eigenvalues of finite multiplicities. Precisely, settingν0 = infv∈R3 σ(v) > 0,

S(L) = {λ ∈ R ; λ 6 −ν0} ∪ {λn ; n ∈ I}

whereI ⊂ N and (λn)n is a decreasing sequence of real eigenvalues ofL with finite algebraic
multiplicities: λ0 = 0 > λ1 > λ2 . . . > λn > . . . , which unique possible cluster point is−ν0.

Proof. From Proposition 3.4,L is nothing but a compact perturbation of the loss operator−L−.
Hence, Weyl’s Theorem asserts thatS(L) \ S(−L−) consists of, at most, eigenvalues of finite
algebraic multiplicities which unique possible cluster point is sup{λ, λ ∈ S(−L−)}. In particular,
up to a rearrangement, one can writeS(L) \ S(−L−) = {λn, n ∈ I} with λ0 > λ1 > λ2 . . . >
λn > . . . . We already saw thatλ0 = 0 sinceM is a steady state ofQ andM ∈ H . Now, since
−L− is a multiplication operator by the collision frequency−σ(·), its spectrumS(−L−) is given
by the essential rangeRess(−σ(·)) of the collision frequency. From Corollary 2.5, one sees without
difficulty that

Ress(−σ(·)) = (−∞,−ν0]

whereν0 = infv∈R3 σ(v) = lim|v−u1|→0 σ(v) = 8
(2+µ)2

√

2πϑ1

m1
is positive. �

Remark 3.8. We conjecture that, as it is the case for elastic interactions [13], the set of eigenvalues
lying in (−ν0, 0) is infinite. However, the technical generalization of the proof of [13] appears to
be non trivial because of the non zero parameterµ. We thank anyway an anonymous referee for
having pointed to us the reference[13].

The above result provides a complete picture of the spectrumof Q as an operator inH (see
Fig. 1) and shows, in particular, the existence of a positivespectral gap|λ1| of L. Note that such
a result, combined with Proposition 3.5, has important consequence on the entropy production,
since it can be shown in an easy way that theH-Theorem reads as

d

dt

∥

∥

∥ f (t) −M
∥

∥

∥

2

H
= 〈L f (t), f (t)〉H .

Consequently, theDirichlet formB( f ) = 〈L f, f 〉H plays the role of entropy-dissipation functional
and the existence of a spectral gap|λ1| is equivalent to the following coercivity estimate forB( f ):

B( f ) > −|λ1| ‖ f ‖2
H

∀ f ⊥ span(M).

One deduces easily the following corollary on the exponential trend towards equilibrium:
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Corollary 3.9. Let f0(v) ∈ H and let f (t, v) be the unique solution to the linear homogeneous
Boltzmann equation(3.2). Then, there is some constantC > 0 such that

∥

∥

∥ f (t, ·) −M
∥

∥

∥

H
6 C exp(−|λ1|t)

∥

∥

∥ f0 −M
∥

∥

∥

H
, for any t > 0,

where0 < |λ1| 6 ν0 is provided by Theorem 3.7.

We refer the reader to [19] for details on the matter, and in particular, for anexplicit estimate
of the spectral gap|λ1|.

4. APPLICATION TO THE HONEST SOLUTIONS OF THEBOLTZMANN EQUATION

4.1. Conservative solutions.We are interested in this section in applying the result of the previ-
ous section to prove the existence of honest solutions to thelinear Boltzmann equation for dissi-
pative hard–spheres

∂t f (x, v, t) + v · ∇x f (x, v, t) = Q( f )(x, v, t), (4.1)

with initial condition
f (x, v, 0) = f0(x, v) ∈ L1(R3 ×R3, dx ⊗ dv),

where the collision operatorQ is given by Eq. (1.2). Recall that the streaming operatorT0 is
defined by

D(T0) = { f ∈ X , v · ∇x f ∈ X}, T0 f = −v · ∇x f

whereX = L1(R3 ×R3, dx ⊗ dv). One can define then the multiplication operatorΣ by

D(Σ) = { f ∈ X , σ f ∈ X}, Σ f (x, v) = −σ(v) f (x, v)

where, as in the previous Section,σ(v) is the collision frequency corresponding todissipative hard
spheresinteractions and given by Eq. (2.5). The following generation result is well-known [3]

Theorem 4.1. The operatorT0 generates aC0-semigroup of isometries(U(t))t>0 ofX given by:

U(t) f (x, v) = f (x − tv, v), t > 0.

The operatorA = T0 + Σ with domainD(A) = D(T0) ∩ D(Σ) is the generator of a contractions
C0-semigroup(V(t))t>0 given by

V(t) f (x, v) = exp(−σ(v)t) f (x − tv, v), t > 0.

Let us define nowK as the gain operatorQ+ endowed with the domain ofA:

D(K) = D(A), K f (x, v) = Q+( f )(x, v) = ǫ−2

∫

R3×S2

|q · n| f (x, v⋆)M1(w⋆)dwdn.

It is clear from (1.5) that, for anyf ∈ D(K),
∫

R3×R3

(A f + K f )dxdv = 0, (4.2)

while K f > 0 for any f ∈ D(K), f > 0. Then, the following generation result is a direct conse-
quence of [1, 25]:
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Theorem 4.2. There exists a positive contractions semigroup(Z(t))t>0 in X whose generatorG is
an extension ofA + K. Moreover,(Z(t))t>0 is minimal, i.e. if(T(t))t>0 is a positiveC0-semigroup
generated by an extension ofA + K, thenT(t) > Z(t) for anyt > 0.

The natural question is now to determine whether the ”formal” mass conservation identity (1.6)
can be made rigorous. Namely, one aims to prove that, for any nonnegativef ∈ X, the following
holds:

‖Z(t) f ‖ = ‖ f ‖, ∀t > 0.

The important point to be noticed is the following. IfG = A + K, then any functionϕ ∈ D(G) can
be approximated by a sequence(ϕn)n ⊂ D(A + K) = D(A) such thatϕn → ϕ and(A + K)ϕn →

Gϕ asn→∞. In particular, (4.2) implies that
∫

R3×R3

Gϕ dxdv = lim
n→∞

∫

R3×R3

(A + K)ϕndxdv = 0, ∀ϕ ∈ D(G).

Now, for any given initial datumf0 ∈ D(G), f0 > 0, the solutionf (t) = Z(t) f0 of (4.1) is such that

d

dt
‖ f (t)‖ =

∫

R3×R3

d

dt
f (t)dxdv =

∫

R3×R3

G f (t)dxdv = 0,

i.e.
‖ f (t)‖ = ‖ f0‖, ∀t > 0.

This means that, ifG = A + K, then the solutions to the linear Boltzmann equation (4.1) are
conservative. On the other hand, ifG is a larger extension ofA+K thanA + K, then there may be
a loss of particles in the evolution (see [3] for the matter aswell as [2] for examples of transport
equation for which such a loss of particles occurs because ofboundary conditions). Precisely, if
G , A + K then there existsf0 ∈ X, f0 > 0 such that

‖Z(t) f0‖ < ‖ f0‖ for somet > 0.

This shows that the determination of the domainD(G) of G is of primary importance in the
study of the Boltzmann equation. This is the main concern of the so–calledsubstochastic pertur-
bation theory ofC0-semigroups[3].

We point out that the question of the honesty of the semigroupgoverning the Boltzmann equa-
tion also arises in the study of thespace-homogeneousversion of the latter equation. Indeed, it is
the unboundedness of the collision frequency (and consequently that of whole collision operator
Q) that may give rise todishonest solutionsto the Boltzmann equation. Actually, to prove the
honesty of theC0-semigroup(Z(t))t>0, we will adopt the strategy developed first in [1] and sys-
tematized in [3]. More precisely, we will show that the gain operatorK fullfils the assumption of
[1]:

Proposition 4.3. There existsC > 0 such that, for any fixed̺ > 0,

ess sup
|v−u1 |6̺

∫

|v′−u1|>̺
k(v′, v)dv′ 6 C.
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Proof. Since the kernelk(v, v′) differs from the corresponding one for classical gas, except from
numerical constants, one can applymutatis mutandisthe technical calculations of [1, Section 4.1]
(see also [3, p. 329-330]) to get the desired estimate. �

As a consequence, one deduces immediately from [1], the mainresult of this section:

Theorem 4.4. The generatorG of the minimal semigroup(Z(t))t>0 is given by

G = A + K.

In particular, theC0-semigroup(Z(t))t>0 is honest and
∫

R3×R3

Z(t) f (x, v)dxdv =

∫

R3×R3

f (x, v)dxdv for any f ∈ X and anyt > 0.

4.2. Consequence on the entropy production.As a direct application of the above result (The-
orem 4.4), we give a direct rigorous proof of the linearH–Theorem of [14]. In order to stay in
the formalism of [14], we shall restrict ourselves to the space-homogenous case. Precisely, letY
denote the set of functions depending only on the velocity and integrable with respect to velocities:

Y = L1(R3, dv),

equipped with its natural norm‖ · ‖Y. For any nonnegativef andg in Y, we define theinformation
of f with respect tog by

I( f |g) =

∫

R3

(

f (v) ln f (v) − f (v) ln g(v)
)

dv

with the conventions0 ln 0 = 0 andx ln 0 = −∞ for anyx > 0. This means that the information
is nothing but the entropy functionalHΦ for the particular choice ofΦ(s) = s ln s. One recalls the
main result of [24]:

Theorem 4.5.LetU be a stochastic operator ofY, i.e. U is a positive operator such that‖U f ‖Y =
‖ f ‖Y for any f ∈ Y, f > 0. Then,

I(U f |Ug) 6 I( f |g)

for any nonnegativef , g in Y. In particular, if g ∈ Y is a nonnegative fixed point ofU then,

I(U f |g) 6 I( f |g), ∀ f ∈ Y, f > 0.

According to the results of the previous section, it is not difficult to see that the restriction of
(Z(t))t>0 to Y is aC0-semigroup of stochastic operators ofY. Since the unique equilibrium state
M ∈ Y is space independent, one sees that(T1 + K)M = 0 and, in particular,

ZY(t)M =M, ∀t > 0.

Combining this with Theorem 4.5, one obtains a rigorous and direct proof of theH–Theorem [14,
Theorem 5.1]:

Theorem 4.6. Let f0 ∈ Y be a given nonnegative (space homogeneous) distribution function with
unit mass, i.e.‖ f0‖Y = 1. Assume thatI( f0|M) < ∞, then

d

dt
I( f (t)|M) 6 0, (t > 0),
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where f (t) = ZY(t) f0 = Z(t) f0 is the unique solution to(4.1)with f (0) = f0.

Remark 4.7. Note that, once the conservativity of the solution to the Boltzmann equation as-
serted by Theorem 4.4, the aboveH-Theorem can be proved by usual standard method of kinetic
theory. However, we insist on the fact that such standard proofs require the solutionf (t, v) to be
conservative and, in some sense, the use of the substochastic semigroup theory.
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[6] T. CARLEMAN , Problèmes mathématiques dans la théorie cinétique des gaz.Publications Scientifiques de

l’Institut Mittag-Leffler,2, 1957.
[7] C. CERCIGNANI, R. ILLNER AND M. PULVIRENTI ,The mathematical theory of dilute gases, Springer–Verlag,

New York, 1994.
[8] M. H. ERNST, R. BRITO. Scaling solutions of inelastic Boltzmann equation with over–populated high energy

tails.J. Statist. Phys.109, 407–432, 2002.
[9] E. FERRARI, L. PARESCHI, Modelling and numerical methods for the diffusion of impurities in a gas,Int. J.

Numer. Meth. Fluids, to appear.
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