10,164 research outputs found
Robust Foregrounds Removal for 21-cm Experiments
Direct detection of the Epoch of Reionization via the redshifted 21-cm line
will have unprecedented implications on the study of structure formation in the
early Universe. To fulfill this promise current and future 21-cm experiments
will need to detect the weak 21-cm signal over foregrounds several order of
magnitude greater. This requires accurate modeling of the galactic and
extragalactic emission and of its contaminants due to instrument chromaticity,
ionosphere and imperfect calibration. To solve for this complex modeling, we
propose a new method based on Gaussian Process Regression (GPR) which is able
to cleanly separate the cosmological signal from most of the foregrounds
contaminants. We also propose a new imaging method based on a maximum
likelihood framework which solves for the interferometric equation directly on
the sphere. Using this method, chromatic effects causing the so-called "wedge"
are effectively eliminated (i.e. deconvolved) in the cylindrical () power spectrum.Comment: Subbmited to the Proceedings of the IAUS333, Peering Towards Cosmic
Dawn, 4 pages, 2 figure
Scheduling the installation of the LHC injection lines
The installation of the two Large Hadron Collider (LHC) injection lines has to fit within tight milestones of the LHC project and of CERN's accelerator activity in general. For instance, the transfer line from the Super Proton Synchrotron (SPS) to LHC point 8 (to fill the anti-clockwise LHC ring) should be tested with beam before the end of 2004 since the SPS will not run in 2005. It will first serve during the LHC sector test in 2006. Time constraints are also very strong on the installation of the transfer line from the SPS to LHC point 2 (for the clockwise LHC ring): its tunnel is the sole access for the LHC cryo-magnets and a large part of the beam line can only be installed once practically all LHC cryo-magnets are in place. Of course, the line must be operational when the LHC starts. This paper presents the various constraints and how they are taken into account for the logistics and installation planning of the LHC injection lines
Number partitioning as random energy model
Number partitioning is a classical problem from combinatorial optimisation.
In physical terms it corresponds to a long range anti-ferromagnetic Ising spin
glass. It has been rigorously proven that the low lying energies of number
partitioning behave like uncorrelated random variables. We claim that
neighbouring energy levels are uncorrelated almost everywhere on the energy
axis, and that energetically adjacent configurations are uncorrelated, too.
Apparently there is no relation between geometry (configuration) and energy
that could be exploited by an optimization algorithm. This ``local random
energy'' picture of number partitioning is corroborated by numerical
simulations and heuristic arguments.Comment: 8+2 pages, 9 figures, PDF onl
Ratchet behavior in nonlinear Klein-Gordon systems with point-like inhomogeneities
We investigate the ratchet dynamics of nonlinear Klein-Gordon kinks in a
periodic, asymmetric lattice of point-like inhomogeneities. We explain the
underlying rectification mechanism within a collective coordinate framework,
which shows that such system behaves as a rocking ratchet for point particles.
Careful attention is given to the kink width dynamics and its role in the
transport. We also analyze the robustness of our kink rocking ratchet in the
presence of noise. We show that the noise activates unidirectional motion in a
parameter range where such motion is not observed in the noiseless case. This
is subsequently corroborated by the collective variable theory. An explanation
for this new phenomenom is given
Adaptive Regret Minimization in Bounded-Memory Games
Online learning algorithms that minimize regret provide strong guarantees in
situations that involve repeatedly making decisions in an uncertain
environment, e.g. a driver deciding what route to drive to work every day.
While regret minimization has been extensively studied in repeated games, we
study regret minimization for a richer class of games called bounded memory
games. In each round of a two-player bounded memory-m game, both players
simultaneously play an action, observe an outcome and receive a reward. The
reward may depend on the last m outcomes as well as the actions of the players
in the current round. The standard notion of regret for repeated games is no
longer suitable because actions and rewards can depend on the history of play.
To account for this generality, we introduce the notion of k-adaptive regret,
which compares the reward obtained by playing actions prescribed by the
algorithm against a hypothetical k-adaptive adversary with the reward obtained
by the best expert in hindsight against the same adversary. Roughly, a
hypothetical k-adaptive adversary adapts her strategy to the defender's actions
exactly as the real adversary would within each window of k rounds. Our
definition is parametrized by a set of experts, which can include both fixed
and adaptive defender strategies.
We investigate the inherent complexity of and design algorithms for adaptive
regret minimization in bounded memory games of perfect and imperfect
information. We prove a hardness result showing that, with imperfect
information, any k-adaptive regret minimizing algorithm (with fixed strategies
as experts) must be inefficient unless NP=RP even when playing against an
oblivious adversary. In contrast, for bounded memory games of perfect and
imperfect information we present approximate 0-adaptive regret minimization
algorithms against an oblivious adversary running in time n^{O(1)}.Comment: Full Version. GameSec 2013 (Invited Paper
Fine and ultrafine particle number and size measurements from industrial combustion processes : primary emissions field data
This study is to our knowledge the first to present the results of on-line measurements of residual nanoparticle numbers downstream of the flue gas treatment systems of a wide variety of medium- and large-scale industrial installations. Where available, a semi-quantitative elemental composition of the sampled particles is carried out using a Scanning Electron Microscope coupled with an Energy Dispersive Spectrometer (SEM-EDS). The semi-quantitative elemental composition as a function of the particle size is presented. EU's Best Available Technology documents (BAT) show removal efficiencies of Electrostatic Precipitator (ESP) and bag filter dedusting systems exceeding 99% when expressed in terms of weight. Their efficiency decreases slightly for particles smaller than 1 mu m but when expressed in terms of weight, still exceeds 99% for bag filters and 96% for ESP. This study reveals that in terms of particle numbers, residual nanoparticles (NP) leaving the dedusting systems dominate by several orders of magnitude. In terms of weight, all installations respect their emission limit values and the contribution of NP to weight concentrations is negligible, despite their dominance in terms of numbers. Current World Health Organisation regulations are expressed in terms of PM2.5 wt concentrations and therefore do not reflect the presence or absence of a high number of NP. This study suggests that research is needed on possible additional guidelines related to NP given their possible toxicity and high potential to easily enter the blood stream when inhaled by humans
Optimization of soliton ratchets in inhomogeneous sine-Gordon systems
Unidirectional motion of solitons can take place, although the applied force
has zero average in time, when the spatial symmetry is broken by introducing a
potential , which consists of periodically repeated cells with each cell
containing an asymmetric array of strongly localized inhomogeneities at
positions . A collective coordinate approach shows that the positions,
heights and widths of the inhomogeneities (in that order) are the crucial
parameters so as to obtain an optimal effective potential that yields
a maximal average soliton velocity. essentially exhibits two
features: double peaks consisting of a positive and a negative peak, and long
flat regions between the double peaks. Such a potential can be obtained by
choosing inhomogeneities with opposite signs (e.g., microresistors and
microshorts in the case of long Josephson junctions) that are positioned close
to each other, while the distance between each peak pair is rather large. These
results of the collective variables theory are confirmed by full simulations
for the inhomogeneous sine-Gordon system
Should liver enzymes be checked in a patient taking niacin?
No randomized trials directly address the question of frequency of liver enzyme monitoring with niacin use. Niacin use is associated with early and late hepatotoxicity (strength of recommendation [SOR]: B, based on incidence data from randomized controlled trials and systematic reviews of cohort studies). Long-acting forms of niacin (Slo-Niacin) are more frequently associated with hepatotoxicity than the immediate-release (Niacor, Nicolar) or extended-release (Niaspan) forms (SOR: B, based on 1 randomized controlled trial and systematic reviews of cohort studies)
- …
