67 research outputs found

    The EEE Project

    Get PDF
    The new experiment ``Extreme Energy Events'' (EEE) to detect extensive air showers through muon detection is starting in Italy. The use of particle detectors based on Multigap Resistive Plate Chambers (MRPC) will allow to determine with a very high accuracy the direction of the axis of cosmic ray showers initiated by primaries of ultra-high energy, together with a high temporal resolution. The installation of many of such 'telescopes' in numerous High Schools scattered all over the Italian territory will also allow to investigate coincidences between multiple primaries producing distant showers. Here we present the experimental apparatus and its tasks.Comment: 4 pages, 29th ICRC 2005, Pune, Indi

    Study of the effect of neutrino oscillation on the supernova neutrino signal with the LVD detector

    Full text link
    We present an update of our previous study (astro-ph/0112312) on how ν\nu oscillations affect the signal from a supernova core collapse observed in the LVD detector at LNGS. In this paper we use a recent, more precise determination of the cross section (astro-ph/0302055) to calculate the expected number of inverse beta decay events, we introduce in the simulation also the ν\nu-{\rm Fe} interactions, we include the Earth matter effects and, finally, we study also the inverted mass hierarchy case.Comment: 4 pages, 4 figures, to appear in the Proceedings of ICRC 200

    On-line recognition of supernova neutrino bursts in the LVD detector

    Full text link
    In this paper we show the capabilities of the Large Volume Detector (INFN Gran Sasso National Laboratory) to identify a neutrino burst associated to a supernova explosion, in the absence of an "external trigger", e.g., an optical observation. We describe how the detector trigger and event selection have been optimized for this purpose, and we detail the algorithm used for the on-line burst recognition. The on-line sensitivity of the detector is defined and discussed in terms of supernova distance and electron anti-neutrino intensity at the source.Comment: Accepted for pubblication on Astroparticle Physics. 13 pages, 10 figure

    First CNGS events detected by LVD

    Get PDF
    The CERN Neutrino to Gran Sasso (CNGS) project aims to produce a high energy, wide band νμ\nu_{\mu} beam at CERN and send it toward the INFN Gran Sasso National Laboratory (LNGS), 732 km away. Its main goal is the observation of the ντ\nu_{\tau} appearance, through neutrino flavour oscillation. The beam started its operation in August 2006 for about 12 days: a total amount of 7.6 10177.6~10^{17} protons were delivered to the target. The LVD detector, installed in hall A of the LNGS and mainly dedicated to the study of supernova neutrinos, was fully operating during the whole CNGS running time. A total number of 569 events were detected in coincidence with the beam spill time. This is in good agreement with the expected number of events from Montecarlo simulations.Comment: Accepted for publication by the European Physical Journal C ; 7 pages, 11 figure

    Search for low energy neutrinos in correlation with the 8 events observed by the EXPLORER and NAUTILUS detectors in 2001

    Get PDF
    We report on a search for low-energy neutrino (antineutrino) bursts in correlation with the 8 time coincident events observed by the gravitational waves detectors EXPLORER and NAUTILUS (GWD) during the year 2001. The search, conducted with the LVD detector (INFN Gran Sasso National Laboratory, Italy), has considered several neutrino reactions, corresponding to different neutrino species, and a wide range of time intervals around the (GWD) observed events. No evidence for statistically significant correlated signals in LVD has been found. Assuming two different origins for neutrino emission, the cooling of a neutron star from a core-collapse supernova or from coalescing neutron stars and the accretion of shocked matter, and taking into account neutrino oscillations, we derive limits to the total energy emitted in neutrinos and to the amount of accreting mass, respectively.Comment: Accepted for publication in Astronomy and Astrophysic

    Study of the effect of neutrino oscillations on the supernova neutrino signal in the LVD detector

    Get PDF
    The LVD detector, located in the INFN Gran Sasso National Laboratory (Italy), studies supernova neutrinos through the interactions with protons and carbon nuclei in the liquid scintillator and interactions with the iron nuclei of the support structure. We investigate the effect of neutrino oscillations in the signal expected in the LVD detector. The MSW effect has been studied in detail for neutrinos travelling through the collapsing star and the Earth. We show that the expected number of events and their energy spectrum are sensitive to the oscillation parameters, in particular to the mass hierarchy and the value of θ13\theta_{13}, presently unknown. Finally we discuss the astrophysical uncertainties, showing their importance and comparing it with the effect of neutrino oscillations on the expected signal.Comment: Accepted for pubblication on Astroparticle Physics. 36 pages, 18 figure

    Targeting neuroinflammation for therapeutic intervention in neurodegenerative pathologies: A role for the peptide analogue of thymulin (PAT)

    Get PDF
    Introduction: Inflammation has a vital task in protecting the organism, but when deregulated, it can have serious pathological consequences. The central nervous system (CNS) is capable of mounting immune and inflammatory responses, albeit different from that observed in the periphery. Neuroinflammation, however, can be a major contributor to neurodegenerative diseases and constitute a major challenge for medicine and basic research. Areas covered: Both innate and adaptive immune responses normally play an important role in homeostasis within the CNS. Microglia, astrocytes and neuronal cells express a wide array of toll-like receptors (TLR) that can be upregulated by infection, trauma, injuries and various exogenic or endogenic factors. Chronic hyper activation of brain immune cells can result in neurotoxic actions due to excessive production of several pro-inflammatory mediators. Several studies have recently described an important role for targeting receptors such as nicotinic receptors located on cells in the CNS or in other tissues for the control of inflammation. Expert opinion: Thymulin and its synthetic peptide analogue (PAT) appear to exert potent anti-inflammatory effects at the level of peripheral tissues as well as at the level of the brain. This effect involves, at least partially, the activation of cholinergic mechanisms. © 2012 Informa UK, Ltd

    Multiple lesions of the conduction system in a case of cardiac rhabdomyosarcoma with complex arrhythmias. An anatomic and clinical study.

    No full text
    Anatomic and electrocardiographic correlations in a case of primary cardiac rhabdomyosarcoma are examined. Interatrial and atrioventricular conduction disturbances were associated with multiple lesions involving the alleged internodal pathways, together with atrial-atrioventricular nodal connections. The clinicopathologic findings seem to be consistent with the hypotheses of the functional and morphologic value of Bachmann's fascicle, and of the inherent pathways of interatrial and internodal conduction in health and disease

    Spin-echo neclear magnetic resonance for tissue characterisation in arrhythmogenic right ventricular cardiomyopathy.

    No full text
    none5noneMENGHETTI L; BASSO C; A. NAVA; ANGELINI A; THIENE GMenghetti, L; Basso, Cristina; Nava, Andrea; Angelini, Annalisa; Thiene, Gaetan

    Biofiltration prototyes for methane oxidation in landfill aftercare and abatement Of NMVOCs and odorous compounds

    No full text
    Landfills are listed as the second anthropogenic source of atmospheric methane (CH4) contributing significantly to climate change. In addition, landfill gas (LFG) may contain more than 200 nonmethane volatile organic compounds (NMVOCs) that may be toxic, odorous or both. Biofilter and biocovers have been identified as an alternative and cost-effective technology to control and mitigate impacts due to CH4 and NMVOCs emissions in both managed and unmanaged landfills. Two biofiltrations prototype were designed and constructed: an active biofiltration system (biofilter) at Podere il Pero landfill (Arezzo, Italy) and a passive biofiltration system (biowindow) at Le Fornaci landfill (Siena, Italy). The biofiltration systems are monitored to study the biological process and evaluate the methane oxidation efficiency and the attenuation of NMVOC emissions. The results of the monitoring campaigns of showed that the active biofiltration system has a relatively high capacity for the CH4 methane oxidation (60-70%) while the passive biofiltration systems showed CH4 oxidation efficiency up to 100%. The results of the monitoring NMVOCs showed a significant reduction (76.98% for the biofilter) of the pollutant inlet the biofiltration prototypes. The odorous emissions results always under the value indicated as concentration limit normally prescribed for exhaust air treatment devices
    • …
    corecore