7,280 research outputs found

    Resolution of First- and Second-Order Linear Differential Equations with Periodic Inputs by a Computer Algebra System

    Get PDF
    In signal processing, a pulse means a rapid change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value. A square wave function may be viewed as a pulse that repeats its occurrence periodically but the return to the baseline value takes some time to happen. When these periodic functions act as inputs in dynamic systems, the standard tool commonly used to solve the associated initial value problem (IVP) is Laplace transform and its inverse. We show how a computer algebra system may also provide the solution of these IVP straight forwardly by adequately introducing the periodic input

    Influence of Zn excess on compositional, structural and vibrational properties of Cu2ZnSn0.5Ge0.5Se4 thin films and their effect on solar cell efficiency

    Full text link
    This Accepted Manuscript will be available for reuse under a CC BY-NC-ND licence after 24 months of embargo periodThe effect of Zn content on compositional, structural and vibrational properties of Cu2ZnSn1-xGexSe4 (CZTGSe, x ~ 0.5) thin films is studied. Kesterite layer is deposited by co-evaporation onto 5 × 5 cm2 Mo/SLG substrate followed by a thermal treatment at maximum temperature of 480 °C, obtaining areas with different composition and morphology which are due to the sample position in the co-evaporation system and to the non-uniform temperature distribution across the substrate. Kesterite layers with higher Zn amounts are characterized by lower Cu and Ge contents; however, a uniform Ge distribution through the absorber layer is detected in all cases. The excess Zn concentration leads to the formation of ZnSe secondary phase on the surface and in the bulk of the absorber as determined by Raman spectroscopy. When higher Ge content and no ZnSe are present in the absorber layer, a compact structure is formed with larger grain size of kesterite. This effect could explain the higher Voc of the solar cell. The Zn content does not affect the bandgap energy significantly (Eg near 1.3 eV), although the observed effect of Zn excess in CZTGSe results in a decreased device performance from 6.4 to 4.2%. This investigation reveals the importance of the control of the off-stoichiometric CZTGSe composition during the deposition process to enhance solar cells propertiesThis work was supported by Spanish Ministry of Science, Innovation and Universities Project WINCOST (ENE2016-80788-C5-2-R) and European Project INFINITE CELL (H2020-MSCA-RISE-2017-777968). ARP also acknowledges financial support from Community of Madrid within Youth Employment Program (PEJD-2017-PRE/IND-4062). MG acknowledges the financial support from ACCIÓ-Generalitat de Catalunya within the TECNIOspring Plus fellowship (TECSPR18-1-0048

    Equilibrium roughening transition in a 1D modified sine-Gordon model

    Get PDF
    We present a modified version of the one-dimensional sine-Gordon that exhibits a thermodynamic, roughening phase transition, in analogy with the 2D usual sine-Gordon model. The model is suited to study the crystalline growth over an impenetrable substrate and to describe the wetting transition of a liquid that forms layers. We use the transfer integral technique to write down the pseudo-Schr\"odinger equation for the model, which allows to obtain some analytical insight, and to compute numerically the free energy from the exact transfer operator. We compare the results with Monte Carlo simulations of the model, finding a perfect agreement between both procedures. We thus establish that the model shows a phase transition between a low temperature flat phase and a high temperature rough one. The fact that the model is one dimensional and that it has a true phase transition makes it an ideal framework for further studies of roughening phase transitions.Comment: 11 pages, 13 figures. Accepted for publication in Physical Review

    Lengua azul: vacunas, inmunomoduladores e inmunidad protectora

    Get PDF
    La Lengua Azul, está producida por un virus ARN del género Orbivirus (familia Reoviridae), considerado como el virus prototipo de este género, del que se conocen al menos 24 serotipos diferentes, no todos patógenos, entre los que no existe inmunidad cruzada, lo que difi culta las estrategias de vacunación. En las dos últimas décadas, y más recientemente desde el verano de 2006, esta enfermedad ha provocado importantes pérdidas económicas, no sólo en las zonas de Europa periódicamente afectadas como los países de la cuenca Mediterránea, sino prácticamente en toda Europa. Los planes de vacunación puestos en marcha por las autoridades sanitarias, han revelado la existencia de reacciones adversas, así como la falta de protección de las vacunas en un elevado porcentaje de casos. En este trabajo pretendemos poner de manifi esto la importancia de conocer los mecanismos inmunológicos que se desarrollan tanto en animales infectados como en animales vacunados. Los mecanismos de acción de cada uno de estos serotipos varían completamente dependiendo de la especie y de la raza afectada. Hasta la fecha son escasos los trabajos in vivo que hayan centrado sus esfuerzos en una caracterización pormenorizada de los mecanismos patogénicos y de la repuesta inmune de cada uno de los serotipos patógenos en las principales especies afectadas por la enfermedad. Sólo con el conocimiento de los mecanismos de acción del virus y con el estudio de los mecanismos que controlar y modulan la respuesta inmune podremos desarrollar herramientas (nuevos adyuvantes, aplicación de inmunomoduladores, etc) que nos permitan mejorar la vacunas existentes, reduciendo las reacciones adversas que producen y potenciando su protección

    Small-Scale Abiotic Factors Influencing the Spatial Distribution of Phytophthora cinnamomi under Declining Quercus ilex Trees

    Get PDF
    Phytophthora root rot is considered one of the main factors associated with holm oak (Quercus ilex L.) mortality. The effectiveness and accuracy of soilborne pathogen and management could be influenced by soil spatial heterogeneity. This factor is of special relevance in many afforestation of southwestern Spain, which were carried out without phytosanitary control of the nursery seedlings. We selected a study area located in a 15 year-old afforestation of Q. ilex, known to be infested by Phytophthora cinnamomi Rands. Soil samples (ntotal = 132) were taken systematically from a grid under 4 trees, and analysed to quantify 12 variables, the colony forming units (cfu) of P. cinnamomi plus 11 physical and chemical soil properties. The combined analysis of all variables was performed with linear mixed models (GLMM), and the spatial patterns of cfu were characterised using an aggregation index (Ia) and a clustering index (ν) by SADIE. Cfu values ranged from 0 to 211 cfu g−1, and the GLMM built with the variables silt, P, K and soil moisture explained the cfu distribution to the greatest extent. The spatial analysis showed that 9 of the 12 variables presented spatial aggregation (Ia > 1), and the clustering of local patches (νi≥1.5) for organic matter, silt, and Ca. The spatial patterns of the P. cinnamomi cfu under planted holm oak trees are related to edaphic variables and canopy cover. Small-scale spatial analysis of microsite variability can predict which areas surrounding trees can influence lower oomycetes cfu availability

    Comparative pan-genome analysis of Piscirickettsia salmonis reveals genomic divergences within genogroups

    Get PDF
    Indexación: Scopus.Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis, functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these genes could be directly associated with inter-genogroup differences in pathogenesis and host-pathogen interactions, information that could be useful in designing novel strategies for diagnosing and controlling P. salmonis infection. © 2017 Nourdin-Galindo, Sánchez, Molina, Espinoza-Rojas, Oliver, Ruiz, Vargas-Chacoff, Cárcamo, Figueroa, Mancilla, Maracaja-Coutinho and Yañez.https://www.frontiersin.org/articles/10.3389/fcimb.2017.00459/ful

    Observational hints of radial migration in disc galaxies from CALIFA

    Get PDF
    Context. According to numerical simulations, stars are not always kept at their birth galactocentric distances but they have a tendency to migrate. The importance of this radial migration in shaping galactic light distributions is still unclear. However, if radial migration is indeed important, galaxies with different surface brightness (SB) profiles must display differences in their stellar population properties. Aims: We investigate the role of radial migration in the light distribution and radial stellar content by comparing the inner colour, age, and metallicity gradients for galaxies with different SB profiles. We define these inner parts, avoiding the bulge and bar regions and up to around three disc scale lengths (type I, pure exponential) or the break radius (type II, downbending; type III, upbending). Methods: We analysed 214 spiral galaxies from the CALIFA survey covering different SB profiles. We made use of GASP2D and SDSS data to characterise the light distribution and obtain colour profiles of these spiral galaxies. The stellar age and metallicity profiles were computed using a methodology based on full-spectrum fitting techniques (pPXF, GANDALF, and STECKMAP) to the Integral Field Spectroscopic CALIFA data. Results: The distributions of the colour, stellar age, and stellar metallicity gradients in the inner parts for galaxies displaying different SB profiles are unalike as suggested by Kolmogorov-Smirnov and Anderson-Darling tests. We find a trend in which type II galaxies show the steepest profiles of all, type III show the shallowest, and type I display an intermediate behaviour. Conclusions: These results are consistent with a scenario in which radial migration is more efficient for type III galaxies than for type I systems, where type II galaxies present the lowest radial migration efficiency. In such a scenario, radial migration mixes the stellar content, thereby flattening the radial stellar properties and shaping different SB profiles. However, in light of these results we cannot further quantify the importance of radial migration in shaping spiral galaxies, and other processes, such as recent star formation or satellite accretion, might play a role

    On-surface synthesis of metal–organic frameworks: the critical role of the reaction conditions

    Get PDF
    Two different metal–organic frameworks with either a honeycomb or Kagome structure were grown on Cu(111) using para-aminophenol molecules and native surface adatoms. Although both frameworks are made up from the same chemical species, they are structurally different emphasizing the critical role being played by the reaction conditions during their growth. This work highlights the importance of the balance between thermodynamics and kinetics in the final structure of surface-supported metal–organic networks

    Statistical properties of random density matrices

    Full text link
    Statistical properties of ensembles of random density matrices are investigated. We compute traces and von Neumann entropies averaged over ensembles of random density matrices distributed according to the Bures measure. The eigenvalues of the random density matrices are analyzed: we derive the eigenvalue distribution for the Bures ensemble which is shown to be broader then the quarter--circle distribution characteristic of the Hilbert--Schmidt ensemble. For measures induced by partial tracing over the environment we compute exactly the two-point eigenvalue correlation function.Comment: 8 revtex pages with one eps file included, ver. 2 - minor misprints correcte
    corecore