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Abstract: Phytophthora root rot is considered one of the main factors associated with holm oak 

(Quercus ilex L.) mortality. The effectiveness and accuracy of soilborne pathogen and management 

could be influenced by soil spatial heterogeneity. This factor is of special relevance in many 

afforestation of southwestern Spain, which were carried out without phytosanitary control of the 

nursery seedlings. We selected a study area located in a 15 year-old afforestation of Q. ilex, known 

to be infested by Phytophthora cinnamomi Rands. Soil samples (ntotal = 132) were taken systematically 

from a grid under 4 trees, and analysed to quantify 12 variables, the colony forming units (cfu) of P. 

cinnamomi plus 11 physical and chemical soil properties. The combined analysis of all variables was 

performed with linear mixed models (GLMM), and the spatial patterns of cfu were characterised 

using an aggregation index (Ia) and a clustering index (ν) by SADIE. Cfu values ranged from 0 to 

211 cfu g−1, and the GLMM built with the variables silt, P, K and soil moisture explained the cfu 

distribution to the greatest extent. The spatial analysis showed that 9 of the 12 variables presented 

spatial aggregation (Ia > 1), and the clustering of local patches (νi≥1.5) for organic matter, silt, and 

Ca. The spatial patterns of the P. cinnamomi cfu under planted holm oak trees are related to edaphic 

variables and canopy cover. Small-scale spatial analysis of microsite variability can predict which 

areas surrounding trees can influence lower oomycetes cfu availability. 

Keywords: GLMM; holm oak decline; tree mortality; root rot.; plantation; dehesas; montados; open 

forests 

 

1. Introduction 

Mediterranean-like savannas of the southern Iberian Peninsula (hereafter dehesas) are 

important ecosystems threatened by socioeconomic, climatic and phytosanitary factors. Currently, 

dehesas are affected by tree mortality caused by root rot [1,2]. After three decades of research and 

development, holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) decline remains the most-important 

cause of tree loss in southern Spain and Portugal [3]. Oak decline has been related to management 

factors, as well as to the influence of climatic factors, such as severe droughts [4]. However, there is 

a broad consensus that biotic agents (pests and diseases) act as triggers for mortality episodes, in the 

context of a continuously-deteriorating ecosystem with limited regeneration capacity [5,6]. 
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The root rot caused by soilborne pathogens from the genera Phytophthora spp. and Pythium spp. 

is considered one of the most-important causes triggering mortality of holm oak [2,7,8], causing rot 

of fine-roots, leading to water and nutritive stress [9], and therefore changes in tree physiology [10] 

which are visible in terms of defoliation and chlorosis, and in many cases tree death. These oomycetes 

remain as resistance structures either in soil, infected roots or debris under unfavourable conditions 

[11], waiting for suitable biotic and abiotic conditions for germination, leading to sporangia 

production and the subsequent release of zoospores which then infect new host roots [12]. 

Due to the heterogeneity of the holm oak fine root distribution, and thus the heterogeneity of 

the soil rhizosphere in dehesas, it is often necessary to carry out large sampling efforts to avoid false 

negative outcomes in diagnosis of root rot caused by Phytophthora spp. [13,14]. This soil heterogeneity 

has been proved to be related with the horizontal canopy distribution in several Quercus spp. [15,16]. 

Biotic and abiotic factors such as soil microbiota community [17–19], and soil moisture and mineral 

nutrients [20–23] are also related to the spatial distribution of the tree canopy, mainly due to the 

differences in the soil exposure to solar radiation and its contribution to processes involved in organic 

matter formation and mineral deposition [24]. 

The spatial distribution of the pathogen inoculum in the soil appears to be influenced by 

rhizosphere heterogeneity, but there is a lack of studies of soil microbiota spatial distribution in forest 

soils at a small-scale [25,26]. Colony forming units (hereafter, cfu) is the number of propagules which 

produce countable colonies after sowing in selective medium plates [27]. It is often used as an 

indicator of the abundance of the inoculum of Phytophthora spp. and other oomycetes in the soil. The 

density of cfu of Phytophthora cinnamomi Rands has been related to calcium content or plant diversity 

in Mediterranean oak forests [25,28]. Thus, it has been hypothesized that the spatial distribution of 

soil physicochemical properties associated with the tree crown may influence the density of the 

oomycete cfu concentration, and therefore the small-scale spatial distribution of the soil pathogen 

[20–23]. 

Furthermore, the afforestation programmes implemented in Spain at the end of the 20th century 

and the beginning of the 21st, in the context of the European Economic Community’s aid scheme for 

forestry measures in agriculture (directives EEC-2080/92, and 1698/2005) have led to 232 000 ha of 

tree plantations in Andalusia, of which 82 775 ha are Q. ilex [29]. The afforestation programme funded 

plantation costs, conservation and maintenance, without paying attention to the phytosanitary 

control of the nursery seedlings at the time of planting. This lack of phytosanitary control is 

considered a threat to seedling survival and a reason for the spread of potential soil pathogens [11,30], 

especially when dealing with invasive alien pathogens such as Phytophthora spp., since biological 

invasion is one of the main drivers of global change in Mediterranean climates [31]. 

The main objective of this study was to evaluate the effect of several soil and plant parameters 

on the spatial distribution and aggregation of P. cinnamomi cfu in holm oak. For this purpose, we 

selected as a case-study an afforestation on former agricultural land, to take advantage of the 

homogeneity of plant genotype and age, climatic variables and soil conditions among the selected 

individuals. The specific objectives were: (i) to evaluate the effect of the tree crown cover and the soil 

physicochemical characteristics on the spatial distribution of the cfu; and (ii) to model the 

relationships between spatial patterns of cfu, tree crown cover and soil variables to evaluate the 

predictive capacity of these variables. Once these objectives were met, we intended to ascertain which 

microsite variables are potentially more important regarding the presence and spatial distribution of 

P. cinnamomi. This could help to guide the sampling effort for the diagnosis of root rot, and to 

determine the predisposition of soils to host the pathogen according to their physical and chemical 

characteristics. 

2. Material and Methods 

2.1. Study Zone 

The study was carried out in a Q. ilex afforestation site located in Puebla de Guzmán (Andalusia 

- southern Spain, coordinates ETRS89, UTM30N: 120 500 mW, 4 167 500 mN, 185–188 masl). The area 
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is characterised by a mean annual temperature of 16.8 °C and a mean annual rainfall of 570 mm 

(Meteorological Station of IFAPA, Puebla de Guzman, coordinates ETRS89, UTM30N: 124 659 mW, 

4 164 620 mN; 195 masl. Institute of Agronomic and Fishery Research and Training-IFAPA, Junta de 

Andalusia), with a dry thermo-Mediterranean climate (120–150 biologically-dry days) with hot and 

dry summers and mild winters. The area has an undulating relief (slope between 5 and 10%, 

Supplementary Material, Table S1). Soils are shallow and acidic in nature, with rocky outcrops of 

slate and schists, an almost total absence of free calcium carbonate and sometimes a slight surface 

layer of organic matter. The site was cropped periodically before 1990 and has been left fallow since 

this date, supporting a mixture of native herbaceous species associated with former agricultural land 

and shrubs (Cistus ladanifer L.). A holm oak plantation was established in 1995. The planting area was 

sub-soiled, using a ripper with a single tine, to a depth of 60 cm and soil clods were broken up using 

a spring harrow and culta-mulcher, to provide a more-level surface for the plantation. The planting 

was done by hand following a systematic spatial pattern of distribution, with a density of 312 plants 

ha−1 (4 × 8 m spacing), using tree shelter. No additional soil treatments were carried out after the 

afforestation. 

2.2. Soil Sampling Design 

In spring (April) 2010, the plot (100 m2) was established to include four Q. ilex trees with 

symptoms of oak decline (mean defoliation 30%) and previously shown to be infested by P. cinnamomi 

(Newbiotechnic S.A., NBT-No. 41/04/PR/PSX). The effects of practices carried out during cultivation 

and plantation management were homogeneous for the selected trees. The four trees were regular in 

size (DBH = 9.5 ± 0.5 cm; H = 2.5 ± 0.1 m). Visual phytosanitary assessment was carried out following 

the European Network of Damage in Forest Masses manual [32]. The trees ranged in crown damage 

(defoliation) from Class 1 (10 < slight defoliation ≤ 25%) to Class 3 (60 < severe defoliation ≤ 95%) 

(Supplementary Material, Table S1). Apart from P. cinnamomi, no other biotic agents contributing to 

the aboveground symptoms were identified during the visual inspection. The presence of root rot 

was confirmed in all cases through roots diagnosis (loss of secondary fine roots, discoloration and 

softness). 

Under each tree crown, a sampling grid was established north facing, following the 

methodology proposed by Gallardo [20], and included two grid sizes (Figure 1): a general grid (G) 1 

× 1 m (n = 16) in a 4 × 4 m quadrat centred in the trunk, and 0.5 × 0.33 m (n = 24) grid, which were 

concentrated within the general sampling quadrat according to the crown cover (crown position: O 

= Outside, T = Transition and I = Inside). Some of the points of the general and concentrated grids 

were the same, with a total of 33 points sampled per tree (n) (Figure 1). Finally, two categories were 

established: outside of the crown cover (OC, n = 22) and inside of the crown cover (IC, n = 11). The 

tree crown projection was obtained with the help of a plumb line, marking the vertical projection of 

the crown margins over the grid. Regarding orientation, all the points belonging to the A and B 

quadrats were considered as North points (N) and the ones located in the C and D quadrats, as South 

points (S). 

2.3. Processing and Analysis of Soil Samples 

In spring (April) 2010, soil samples were taken at each point of the grid (ntotal = 132). The soil 

surface layer and the decomposing organic matter layer were removed from a square of 30 × 30 cm 

centred on the grid point, and a homogeneous soil sample of approximately 1 kg was extracted from 

the mineral horizon, over the point, to a depth of 20 cm, with the help of a spade [13]. Each sample 

was placed in a sealed plastic bag to prevent loss of moisture, properly labelled and preserved in an 

ice-cooler (in the absence of light, at approximately 4 °C) during its transfer to the laboratory. The soil 

samples were air-dried at room temperature for 48 h and then processed by hand, eliminating the 

rough fraction after mechanical milling and crushing. Prior to aliquot separation, the fine fraction 

was homogenised and passed through a 2-mm-Ø sieve. In total, 12 variables (11 edaphic variables 

plus cfu abundance) were evaluated for each soil sample. First, one aliquot of approximately 100 g 

was separated for quantification of P. cinnamomi cfu, and other aliquot of approximately 500 g, was 
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sent to Innoagral laboratories, Grupo Hespérides Biotech S.L., (Sevilla, Spain) for the analysis of 10 

soil physicochemical variables (% of clay, silt, and sand, pH, organic matter in soil, total nitrogen, 

carbon-nitrogen ratio and amount of phosphorus, calcium and potassium) (Supplementary Material, 

Table S2). 

Finally, soil moisture (% volumetric content of water) was measured at a depth of 12 cm at all of 

the sampling points, with a Time Domain Reflectometry (TDR) sensor (Field Scout TDR 100, 

Spectrum Technologies, Inc. Aurora, IL USA), at the same time as the collection of soil samples. 

 

Figure 1. Soil sample design (according to Gallardo et al. [20] at two different scales: general grid (1 × 

1 m) (G, n = 16) and specific position grid (0.5 × 0.33 m) corresponding to inside of the crown cover (I, 

n = 8), transition (T, n = 8), and outside of the crown cover (O, n = 8) for each of the four sampled trees. 

The black points belong to the group outside of the crown cover (OC, n = 22) and the white points 

belong to the group inside of the crown cover (IC, n = 11). The letters N, E, S and W, indicate the 

cardinal points. 
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2.4. Quantification of Cfu 

Ten grams of each homogenised aliquot of soil for cfu analysis, previously dried at room 

temperature, was suspended in 100 mL 0.2% agar solution, as described in Romero et al. [27]. The 

solution was gently shaken and 1 mL of the soil suspension was plated with a 1000 µl pipette on 10 

Petri plates for each soil sample, containing NARPH selective medium [14]. The soil suspension was 

carefully distributed over the surface of the selective medium with the help of an inoculation loop. 

The plates were incubated at room temperature in darkness for 24 h, after which the soil suspension 

was removed with sterile water. Colonies growing on each plate were counted after an additional 72 

h of incubation after washing. 

The hyphal bodies that had grown in the culture medium were quantified visually by light 

contrast with a 10 × 1 magnifying glass (Nikon SMZ800, Nikon Corp., Tokyo, Japan) and a millimetre 

mesh. Some growing structures were identified through the observation of aleatory chosen NARPH 

dishes under microscope (Motic BA310E, Motic Instruments Co., Ltd., Chengdu, China) to ensure 

that no other organisms different from P. cinnamomi were counted. This species was easy identified 

through the characteristic aseptate coralloid hyphae with clustered hyphal swellings. The sum of the 

cfu for the 10 replicates per sample was expressed as cfu/g of dry soil. Due to the positive 

identification of P. cinnamomi on the soil, through molecular methods, and the results of the checking 

of aleatorily chosen NARPH plates, all the cfu counted were considered directly related with P. 

cinnamomi cfu abundance. 

2.5. Statistical Analysis 

All the variables were examined for normality (Shapiro-Wilk test, P < 0.05) and homoscedasticity 

(Levene test, P < 0.05). When the data did not fit to a normal distribution, the variable was subjected 

to a square root or logarithmic transformation. Once the normality and homoscedasticity 

requirements were met, the variables N, OM, C/N, percentage of silt and sand, pH and Ca were 

analysed using one-way analysis of variance (ANOVA), considering crown position and orientation 

as independent factors. In those cases where the variables were significant, Tukey’s test for multiple 

comparisons of means was used to check for differences [33]. In the case of the non-normal variables 

(cfu, clay percentage, P, K and moisture), a Kruskal-Wallis (H) mean comparison test and the Mann-

Whitney U test were applied for pairs of independent groups (P < 0.05). When Mann-Whitney U test 

was used for mean comparisons on the I-O-T grids, the α threshold to reject the null hypothesis was 

corrected according to Bonferroni (P < 0.0167) [34]. Specific correlations between the soil variables 

and cfu were determined using a non-parametric Spearman rho coefficient (ρ) at a significance level 

of 5% (P < 0.05), including soil variables that did not follow a normal distribution. Statistical analysis 

was performed using “R” version 3.3.1. [35]. 

The spatial patterns of cfu were characterised using Spatial Analysis by Distance Indices 

(SADIE), implemented in the program “SADIEShell v2.0” and the aggregation index (Ia) and 

clustering index (ν) were calculated per plot [36,37]. The Ia provides information on the overall spatial 

pattern of each environmental variable. According to Quero et al., [38] the spatial pattern is 

aggregated if Ia > 1, random if Ia is close to one and regular if Ia < 1. The index ν measures the degree 

of clustering of the data into patches (mean νi: areas of high values of the target variable) and gaps 

(mean νj: areas of low values). Then, ν was contoured by kriging in a two-dimensional map showing 

their spatial distribution of patches (ν ≥ 1.5) and gaps (ν ≤ −1.5) using Surfer 10.1 (Golden Software, 

Colorado, USA). An independent SADIE analysis was performed for each variable and tree. 

Afterwards the mean values of Ia for all the variables in the four trees were calculated and were also 

represented using the bilinear interpolation method in Surfer 10.1. 

Finally, the relationship of the soil variables with the inoculum concentration and crown cover 

was assessed through a generalized linear mixed model (GLMM). This methodology allows the 

analysis of non-normal data that involve fixed or random effects [39]. The GLMM was implemented 

through the “lme4” package. The cfu variable was modelled through Poisson distribution with log 

transformation. The independent variables were previously filtered using a Variance Inflation Factor 
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(VIF) threshold of 10, and the tree and crown position were selected as random effects [40]. Despite 

the relevance of crown position as the main factor of this study explaining spatial distribution of 

several variables, this factor did not present significant influence over the cfu variable when used in 

the model as fixed effect. Different model configurations were tested, providing the use of crown 

position and tree as random effects the best result. Autocorrelation of the output model was 

evaluated through the analysis of model residuals and correlation matrix of fixed effects. The model 

was selected based on the lowest value of Akaike’s Information Criterion (AIC), which indicates the 

optimal fit, and the influence of effects was tested through a likelihood ratio test [41]. Comparison 

between Random Effects influence was performed through ANOVA linear model deleting each effect 

with glmerControl optimization type “bobyqa” (package “lmer4”) and the influence of single fixed 

factors through automatic model reduction and Chi-squared test. 

3. Results 

3.1. Spatial Distribution of the Cfu 

The cfu values of soil samples ranged from 0 to 211 cfu g−1, for all four trees, showing significant 

correlation with the tree defoliation level (ρ = 0.986, P < 0.05). Moreover, cfu showed significant 

differences according to the crown cover factor (I, T and O; HI-O = 20.886, PI-O < 0.001; HO-T = 20.491, 

PO-T < 0.001; HI-T = 7.549, PI-T < 0.01). The I-grid showed a significant greater concentration of cfu than 

O grid in all cases (UI-O = 174.5, PI-O < 0.001), and the T-grid presented more variability in its results 

depending on the tree (Table 1). Moreover, a significantly higher cfu value in the IC grid was 

observed with respect to OC (HIC-OC = 27.4; UIC-OC = 882.5, PIC-OC < 0.001). 

The highest value of cfu in the T-grid occurred in trees with higher level of defoliation (trees 3 

and 4, 35 and 70%, respectively). As in the I-grid, the cfu value of IC samples was directly 

proportional to the defoliation level, being significantly higher for tree 4. Moreover, cfu was 

significantly higher in points located on the north side of the grid (Hcfu = 8.422, P < 0.01). 

Table 1. Colony forming units of each tree (cfu sample−1, mean ± standard error) according to sample 

grid and sample position with respect to tree crown cover. Mean cfu: mean value of cfu considering 

all the samples; n: number of soil samples per grid under each tree; I: inside crown intensive grid; T: 

transition intensive grid; O: outside crown intensive grid; IC: all samples inside crown cover; OC: all 

samples outside crown cover. Different lowercase letters in superscript indicate significant differences 

between position with respect to crown cover (Mann-Whitney U Test, P < 0.05 for IC-OC comparisons 

and P < 0.0167 for I-O-T comparisons). No comparisons were made between means corresponding to 

different factors (I, O and T with IC and OC). 

Position respect to crown cover 

Tree 
Mean cfu 

n = 33 

I 

n = 8 

T 

n = 8 

O 

n = 8 

 IC 

n = 11 

OC 

n = 22 

1 12 ± 3 22 ± 5a 6 ± 4b 5 ± 2b  23 ± 7a 6 ± 2b 

2 13 ± 5 34 ± 13a 4 ± 3b 3 ± 2b  26 ± 10a 7 ± 6b 

3 19 ± 8 38 ± 20a 39 ± 26a 0 ± 0b  44 ± 21a 5 ± 4b 

4 44 ± 10 119 ± 26a 49 ± 11b 16 ± 6c  100 ± 22a 16 ± 4b 

Mean 22 ± 4 53 ± 11a 24 ± 8b 6 ± 2b  48 ± 9a 9 ± 2b 

3.2. Spatial Distribution of Edaphic Variables 

Significant differences were found between the overall positions for all variables, except for N, 

C/N, silt and moisture (Table 2). Clay, P and K were also significantly different between IC and OC 

(Hclay = 6.3, Pclay < 0.05; HP = 4.6, PP < 0.05; and HK = 4.2, PK < 0.0167), but regarding the concentrated 

grids (I, T and O positions) only OM, Clay and P presented differences. OM, clay and phosphorus 

were higher at points of the I grid in a significant extent to O grid (FI-O (OM) = 5.5, PI-O (OM) < 0.0167; UI-O 

(clay) = 318.0, PI-O (clay) < 0.0167; UI-O (P) = 327.0, PI-O (P) < 0.0167). 
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The Kruskal-Wallis test showed significant differences for clay, P and K relative to the IC and 

OC grids (Hclay = 6.304, Pclay < 0.05; HP = 4.564, PP < 0.05; HK = 4.232, PK < 0.05). Similarly, to the cfu 

results (Table 1), P and K had significantly higher concentrations under the crown cover, while clay 

had significantly lower percentages (Table 2). Regarding orientation, OM (FOM = 6.049, P < 0.05), pH 

(FpH = 5.543, P < 0.05), Ca (FCa = 14.792, P < 0.05) and K (HK = 2746, P < 0.01) presented significant 

differences between North and South sides, with higher values in North side, except in the case of 

OM. 

Moreover, the analysis of the Spearman’s bivariate correlations showed a significant and 

positive relationship between cfu and sand (ρ = 0.242, P < 0.01), pH (ρ = 0.319, P < 0.001), Ca (ρ = 0.374, 

P < 0.001) and K (ρ = 0.352, P < 0.001), and a significant and negative one with clay (ρ = −0.398, P < 

0.001). 

Table 2. Edaphic variables. Mean values (mean ± standard error) according to sample grid and 

position respect to tree crown cover. n: total number of samples. I: inside crown grid; T: transition 

grid; O: outside crown grid. IC: samples inside crown cover; OC: samples outside crown cover; (ρ): 

Spearman correlation coefficient between cfu (n = 132) and physicochemical soil parameters. Different 

letters in superscript indicate significant differences with respect to crown cover (Tukey test for 

normal distributed variables, P < 0.05 and Mann-Whitney U Test for non-normal distributed variables, 

P < 0.05 for IC-OC comparisons and P < 0.0167 for I-O-T comparisons †). No comparisons were made 

between means corresponding to different factors (I, O and T with IC and OC). 

Position with respect to crown cover 

Variable 
I 

n = 32 

T 

n = 32 

O 

n = 32 

 IC 

n = 44 

OC 

n = 88 

Corr. coef. 

(ρ) 

N (%) 0.19 ± 0.01a 0.18 ± 0.01a 0.18 ± 0.01a  0.19 ± 0.01a 0.17 ± 0.01a −0.045 

OM (%) 1.91 ± 0.11b 1.47 ± 0.12b 1.77 ± 0.11a  1.78 ± 0.08a 1.61 ± 0.07a −0.008 

C/N  6.67 ± 0.52a 5.13 ± 0.49a 6.25 ± 0.54a  6.09 ± 0.39a 5.98 ± 0.36a 0.020 

Clay † (%) 27.17 ± 1.01b 28.21 ± 0.90ab 26.85 ± 1.33a  25.43 ± 0.84a* 28.66 ± 0.67b* −0.398*** 

Silt (%) 37.28 ± 1.36a 38.86 ± 1.16a 37.68 ± 1.28a  38.49 ± 1.23a 37.25 ± 0.69a −0.026 

Sand (%) 35.54 ± 2.03a 32.93 ± 1.34a 35.48 ± 2.17a  36.08 ± 1.72a 34.09 ± 1.07a 0.242** 

P † (mg/kg) 32.45 ± 9.05b 7.41 ± 3.38b 19.58 ± 6.94a  27.07 ± 6.55a* 12.19 ± 3.31b* 0.109 

pH  5.13 ± 0.06a 5.17 ± 0.04a 5.20 ± 0.05a  5.13 ± 0.04a 5.19 ± 0.03a 0.319*** 

Ca (meq/100 g) 0.70 ± 0.04a 0.59 ± 0.03a 0.73 ± 0.05a  0.64 ± 0.03a 0.67 ± 0.03a 0.374*** 

K † (meq/100 g) 0.50 ± 0.13a 0.20 ± 0.02a 0.22 ± 0.05a  0.41 ± 0.09a* 0.19 ± 0.02b* 0.352*** 

Moisture † (%) 15.04 ± 1.24a 15.75 ± 0.65a 15.24 ± 0.77a  15.25 ± 0.84a 15.30 ± 0.46a 0.066 

*: Significant at P < 0.05; **: Significant at P < 0.01 ***: Significant at P < 0.001. 

3.3. Spatial Analysis and Location of Edaphic Variables and Relationship with Cfu 

All variables showed spatial aggregation (Ia > 1) in at least one tree (Figure 2). The aggregation 

was significant (P < 0.05) for clay in trees 2, 3 and 4; OM, P and silt in trees 2 and 4; Ca in trees 3 and 

4; the soil moisture for trees 2 and 3; and K and sand only in trees 1 and 4, respectively. In all other 

options, the variables tend to be random (Ia ≈ 1, P > 0.05, Figure 2). Overall, nine of the twelve variables 

analysed with SADIE presented significant spatial aggregation patterns and up to six did so for trees 

2 and 4, with the latter the most defoliated. 

The clustering indices (ν) showed the presence of patches (νi ≥ 1.5) and/or gaps (νj ≤ −1.5) for all 

variables with Ia > 1 (Figure 2; Supplementary Material, Figure S1). Clay showed significant patches 

(P < 0.05) for trees 2 and 3 and gaps also for tree 3 under the crown cover, tending to cluster in tree 4. 

Organic matter showed clustering patches for trees 1, 2 and 4, as well as gaps for tree 2. Phosphorus 

and silt showed significant patches and gaps for trees 2 and 4, and Ca for trees 3 and 4, tending also 

to gaps in these trees. Soil moisture showed significant patches for trees 2 and 3 as well as gaps for 

tree 2, and K showed significant patches and gaps only for tree 1. 
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The remaining edaphic variables (N, C/N, sand, pH, Ca, K and moisture) did not show any 

significant aggregation patterns (Ia ≈ 1) or significant clustering of patches and gaps, for all trees. 

On the other hand, cfu showed a local aggregated distribution pattern (Ia > 1) that was not strong 

enough to contribute significantly (P > 0.05) to the overall aggregation of the influence of the crown 

area (Figure 2), but these clustering patches (ν > 1.5) were found under the crown cover of all trees as 

well as in the immediate transition zone (Figure 3). 

 

Figure 2. Aggregation indices (Ia) and clustering indices (ν) for the study of 12 variables in the four 

sampled oaks. The horizontal dotted line Ia = 1 indicates the limit of the type of distribution pattern of 

the variable (Ia > 1 aggregated, Ia < 1 regular and Ia = 1 random). The horizontal continuous line (mean 

νi ≥ 1.5) indicates the limit for which the index ν is grouped into patches, i.e., higher values of a given 

variable. The horizontal discontinuous line (mean νj ≤ −1.5) indicates the limit for which the index ν 

is grouped into gaps, i.e., lower values of a given variable. * - P < 0.05; ** - P < 0.01; *** - P < 0.001. 

The variables that presented the most aggregated mean pattern were P, OM, K and clay (Figure 

4). Phosphorous and OM tended to accumulate under crown cover as well as in the transition zone, 

with this tendency being obvious in trees 2-4, and to a lesser extent in tree 1. Potassium showed a 

tendency to be clustered under crown cover, being more evident in trees 3 and 4, which had higher 

levels of defoliation (35 and 70%, respectively). 

Clay showed a dominance of gaps under the crown cover, which is clearer in trees 2 and 4, with 

patches and gaps in tree 2 (νi = 1.884) and 3 (νi = 2.187; νj = −2.045) and smaller gaps with a tendency 

to randomness in tree 1. Potassium showed, under the crown, a dominance of spots in trees 3 and 4 

and a tendency to be in gaps in tree 1 (νj = −1.698) and 2. For P there was, under the crown, a 

dominance of spots in trees 2 (νi = 2.098), 3 and 4 (νi = 1.592), and a tendency to randomness in tree 1. 

Organic matter showed a dominance of patches under the crown in tree 1 (νi = 1.721) and 2 (νi = 1.669), 

small patches and gaps in tree 4 (νi = 1.532) and a tendency to randomness in tree 3. 
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Figure 3. Maps of clustering indices (ν) of the cfu for the four sampled trees (top) and the mean for 

all the trees (bottom). The dark areas show cfu clustering patches (ν > 1.5) delimited by a continuous 

line, and the light areas show clustering gaps (ν < −1.5) delimited by a discontinuous line. The dotted 

lines represent the crown cover of each tree. (Ia): General aggregation index. Legend (ν) is unitless. 
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Figure 4. Maps of clustering indices (ν) of the edaphic variables whose aggregation index (Ia) presents 

statistical significance in at least two trees (Figure 2) and significant differences in mean value between 

grids regarding crown cover (Table 2). By columns: P (phosphorus), OM (organic matter), silt and 

clay. By rows, trees 1 to 4 (projected to 4 × 4 m surface). The darker areas show clustering patches of 

edaphic variables (ν > 1.5) are delimited by a continuous line, and the light areas show edaphic 

variables clustering gaps (ν < −1.5) are delimited by a discontinuous line. The dotted lines represent 

the crown cover of each tree. In the upper right corner of each sampling unit, the overall general 

aggregation pattern (Ia) is indicated. Legend (ν) is unitless. 

The remaining edaphic variables (N, C/N, silt, sand, pH, Ca, and moisture) showed randomness 

in spatial distribution of patches and gaps for the most trees (Supplementary Material, Figure S1). 

3.4. Generalized Linear Mixed Model for Cfu 
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effects. Finally, the generalised mixed model that fitted best to the cfu distribution was the one 
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as random effects, which presented model variances of 1.205 and 1.229, respectively (dimensionless). 

The likelihood ratio test showed also the significant influence of both random effects in the overall 

model (Table 3). 

Table 3. Generalized Linear Mixed Model effects Chi-squared test. First row shows the optimal model 

Akaike Information Criteria (AIC). Df: Degrees of freedom. P: Significance level. 

Single effects influence Df AIC P 

None  2703.8  
    

Random effects Tree 6 4876.2 < 0.001 

Position 6 4103.0 < 0.001 
     

Fixed effects Silt 1 2704.8 0.082 

K 1 2754.4 < 0.001 

P 1 2933.8 < 0.001 

Moisture 1 3864.5 < 0.001 

Although the deletion of silt only produced marginal differences in the resulting model (Table 

3), this parameter was finally included in the output model because of the lower AIC compared with 

the model constructed without this variable. Moreover, when the four selected variables, including 

silt were considered as fixed effects, they contributed significantly (P < 0.05) to the model (Table 4). 

Table 4. Generalized linear mixed model adjusted by maximum likelihood between colony forming 

units (cfu, n = 132) and the explanatory variables (silt, phosphorus, potassium and moisture). P: 

Significance level. 

 Estimate Std. Error z value P 

(Intercept) 2.501 0.957 2.612 < 0.01 

Silt 0.044 0.026 1.737 < 0.05 

P 0.803 0.051 15.877 < 0.001 

K −0.188 0.027 −6.983 < 0.001 

Moisture 1.081 0.032 33.881 < 0.001 

No significant correlation was found between the fixed effects, and the residuals showed a 

normal distribution (D = 0.122, P = 0.099), showing therefore the absence of autocorrelation between 

fixed factors. The final model showed also a strong Intraclass Correlation Coefficient (Adjusted ICC 

= 0.975) indicating that clustering by position under the crown accounted for a high proportion of the 

total variability, and data within each cluster were well correlated. 

4. Discussion 

This work shows the existence of small-scale spatial patterns in the distribution of cfu of P. 

cinnamomi under holm oak trees, related to texture, P, pH, Ca, K and moisture distribution in soil. 

Our results are consistent with those obtained in other studies, where the canopy cover of woody 

plants has been shown to have an important effect on soil properties [20,23,42,43] and these, in turn, 

on soil microorganisms [22,25]; in this case, on the frequency of P. cinnamomi [3]. Additionally, our 

results show a significant linear relationship between the values of the cfu and the edaphic variables 

(texture, P, pH, Ca, K and moisture), which correlate with the presence in soil of these oomycetes 

[44]. 

Although crown defoliation is usually the main factor assessed when studying holm oak health 

status in relation to root rot [45,46], this factor was not considered in our work. This analysis would 

have required different experimental design, considering a plot with a wider range of crown 

defoliation and health status, a healthy plot with similar soil conditions as a control, and more 

biological repetitions for each defoliation level. Such increase in the number of repetitions would 
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have been a big challenge regarding the sampling intensity established under each tree in our study. 

In this work the plot was chosen by its homogeneous conditions in order to determine if soil microsite 

changes driven by crown cover influence were related with cfu distribution. Thus, we assumed that 

our chosen plots had similar disease conditions. Moreover, SADIE or spatial analysis use in few plots 

can be assessed because of an implicitly high sample size [47]. Notwithstanding, and despite the 

relevance of our findings, it is important to indicate that the low number of trees used in our study 

would limit the transferability of the results. 

4.1. The Abundance of Cfu and Soil Parameters are Influenced by the Canopy Cover 

The soil samples were collected in spring (April) 2010, in an area severely affected by root rot in 

Andalusia [48], and showed cfu values similar or slightly superior to those obtained in comparable 

work in the Iberian Peninsula, with inoculum concentrations ranging between 3 and 130 cfu g−1 

[1,49,50]. In this sense, the observed defoliation level in the absence of other biotic agents (pests and 

diseases) is considered to be caused mainly by the root pathogen P. cinnamomi [27,44]. 

The sampled trees were located in a 15 year-old plantation at low density (≈ 312 trees ha−1) with 

scattered shrub cover (Cistus ladanifer L.). The low presence of herbaceous and shrub species allows 

the existence of a homogeneous root system with abundant fine roots, which in the case of the holm 

oak rhizosphere, is allocated mainly in the area under the canopy cover [19]. In previous studies, it 

has been found a significant relationship between soil biological components and the rhizosphere 

under the crown [25,26]. 

Moreover, there was a tendency for the highest concentration of cfu to group under the crown 

on the northern side, independently of the different slopes present in the studied trees. This 

aggregation of cfu might be related with the microclimate that the tree crown’s shade generates on 

the ground, driven by differences in nutrients and organic matter. Other authors have reported 

similar aggregation patterns in soils under holm and cork oaks [20,23,42]. Furthermore, the greater 

presence of fine roots under the crown cover [51,52] agrees with the fine root distribution observed 

in several Mediterranean oak species [53], and should be considered another relevant driver 

influencing this cfu distribution pattern. Woody plant cover influences the edaphic properties, as 

well as the related plant and faunal communities [20,23,54], establishing an important and direct 

relationship between the fertility and presence of soilborne pathogens and thus influencing the health 

status of the tree [25,55]. Moreover, other soil characteristics such as texture, porosity, fertility, 

organic matter, cultivation methods and the presence of host plants are other factors involved in the 

presence of resistant structures in the soil [56]. In our work, some outliers detected in the cfu values 

outside the crown were closely related to the presence of clusters of Cistus ladanifer (data not shown). 

Those data were not eliminated from the analysis because it might be considered that the effects of 

the presence of the shrub clusters on the studied variables should be similar to the effect of the 

presence of the trees [57]. 

The spatial analysis showed that 9 out of the 12 variables analysed with SADIE presented spatial 

aggregation (Ia > 1, P < 0.05) in some of the studied trees, and 11 out of the 12 variables did so for the 

most defoliated tree (#4), but only 6 with significant probability. Results on the spatial distribution of 

nutrients in the current study agreed with those observed by Gallardo [20] and Andivia et al. [23], 

where all variables showed spatial heterogeneity. Nitrogen and OM tended to be clumped under the 

crown cover for all trees, except tree 4 in the case of N. The N cycle is closely related to the processes 

of organic matter in soils, although it seems to be little influenced by the presence of roots and 

mycorrhizae [19]. The soil content of P is also linked to soil biological and chemical processes, and 

forms clusters under the crown cover in three (trees 1, 2 and 4) of the four trees studied. Roots and 

mycorrhizae play an important role in the mineralisation of the P in organic matter through the 

activity of phosphatases [58]; thus, the probable extension of roots beyond the crown cover could 

explain P distribution within and around the crown [59,60]. In this sense, soil N and P concentrations 

depend on the rate of mineralisation and their uptake by roots and microorganisms [20,61], and on 

the interactions with soil mineral components in the case of P [61,62]. Potassium should show less 

spatial dependence on the tree crown than the rest of the essential elements as it is not linked to the 
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organic soil components; however, it showed aggregation of clusters in trees 3 and 4. These 

contrasting results among trees may be related with other processes such as the cortical runoff of K 

leaching from leaves and other aboveground plant organs [20,61,63]. 

4.2. Concentrarion of Cfu was Influenced by the Spatial Distribution of Edaphic Variables 

The significant correlations between the concentration of cfu and the edaphic variables, clay, P, 

OM and K, were related to differences in general values and/or significant aggregation patterns with 

respect to crown cover. These results provide evidence of the influence of crown cover on soil 

conditions and cfu. The lifecycle of P. cinnamomi and other oomycetes is driven by soil conditions, 

persists in the soil as resistance structures when the conditions are unfavourable, and proliferates 

through zoospores when soil temperature and moisture are adequate [55]. Therefore, the influence 

of crown cover on soil conditions might have an indirect influence on the number of cfu. 

For all trees, the concentration of clay was lower under the crown cover. Locations under the 

tree cover showed higher cfu levels accompanied with lower clay and higher sand percentages. Other 

studies have reported loam medium texture under crown cover and clay-loam medium texture 

outside [64]. Although the differences in soil texture were significant for the crown cover, the effect 

of those differences on cfu concentration would be lower than the effect of the presence of fine roots, 

which are supposed to be concentrated under the crown. The root rot of Q. ilex affects mostly the fine 

roots, the most serious effects being on roots growing in relatively dry soils, eventually undergo short 

flooding due to extreme precipitation events [9,31,64]. Therefore, it might be considered that the 

presence of fine roots and soil moisture are more influential environmental drivers for the presence 

of microorganisms compared with changes in soil texture. 

In our study pH and Ca showed a positive correlation with cfu. High concentrations of Ca and 

high pH values in the soil are related on the literature with the inhibition of the pathogen growth and 

the accumulation of survival structures of oomycetes [28,31,65]. However, the overall values we 

found for pH and Ca did not differ regarding crown position and presented small variations among 

all the samples. All the soil samples analysed were acidic (5.1 < pH < 5.5) and the Ca2+ values ranged 

from 0.56 to 0.78 meq 100g−1 (from 0.28 to 0.4 mMol Ca each 100 g of soil) (Table 2). The pH was very 

close to the interval established as the optimum for the development and infection of several 

soilborne pathogen oomycetes in laboratory tests, including P. cinnamomi (optimum pH between 5.5 

and 6.0) [66], and the concentration of Ca was 100 fold lower than the necessary to inhibit the 

mycelium growth of P. cinnamomi on in vitro tests [28]. Therefore, Ca and pH should not be 

considered in our case as factors influencing the distribution of cfu, since the range of Ca and pH 

values could not produce differences in the behaviour of the pathogen. 

The cfu values were predicted to a significant extent by the GLMM using silt and moisture as 

variables, together with P and K, demonstrating that there is an influence of soil conditions on cfu 

abundance apart from tree crown influence. The output model might be considered site-specific 

because it is dependent on a set of microsite characteristics. However, the results suggest that there 

exists a significant influence of the soil variables contributing to the suitability of the microsite 

environment for P. cinnamomi. 

The levels of P and K were significantly different due to crown position, presenting higher values 

under the tree crown. However, when the influence of crown position was taken out of the analysis, 

considering it as a random effect in the mixed model, both P and K concentration explained to a 

significant extent the cfu values. Both P and K were present in higher concentrations under the crown, 

following the same trend as cfu. Other studies showed that N, P, K, OM and the biomass of 

microorganisms tend to concentrate under the crown [21,67]. It could be considered that the influence 

of these soil parameters on the number of cfu is related to the suitability of the microenvironment for 

oomycetes to complete their lifecycle. Some oomycetes species, including several pathogenic 

Phytophthora spp., have the ability to either survive or complete their lifecycle as saprobes [19,68,69], 

despite their poor ability to compete with other saprophytic organisms [70]. Therefore, higher levels 

of organic matter and nutrients might lead to an increase of oomycete resistance structures under a 

saprophytic environment. 
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The cfu distribution seems to be favoured mainly by the grouping of silt patches. Silt is 

considered to equilibrate the clay-sand trend of the soil. Texture and porosity are directly influenced 

by the silt percentage in intermediate textured soils. In our study, the crown cover did not 

significantly influence soil moisture or aggregation patterns. However, the mixed model showed that 

crown cover clearly influenced the cfu abundance. The same occurred with silt, when it was 

considered as fixed effect in the model. Soils with higher silt percentage retain more water [64,71], 

and with higher water content oomycetes are more readily able to produce sporangia and release 

zoospores [72,73]. In contrast, as these soils become drier, oomycetes produce resistant survival 

structures. 

5. Conclusions 

The distribution of P. cinnamomi cfu in soils associated with Q. ilex was not random in the soil 

but showed distribution patterns predictable to some degree, influenced by the crown cover, 

orientation and the levels of soil moisture and fertility. Our results could be useful to increase the 

sampling efficiency of the field surveys. Soil sampling searching for P. cinnamomi in holm oak dehesas 

would be oriented to those areas most likely to contain the pathogen identified in our work, allowing 

a greater number of trees to be sampled. This work also highlights the dynamics of soil properties in 

the presence of tree cover. Clear differences and aggregated spatial patterns in key soil elements were 

where shown to be influenced by canopy cover. The cfu tend to concentrate in the North side, 

probably influenced by the shadow of the crown cover, and in zones with more organic matter, 

nutrients and well-textured soils. In our case, the influence of the texture was driven mainly by silt 

concentration due to the low variation of clay and sand in the studied area. 

Due to the homogeneity of environmental conditions in the selected plot, the output GLMM 

must be considered site-specific, but we demonstrate that it is a useful tool to study the influence of 

soil parameters in the distribution of microbial community due to the elimination of random effects, 

mainly the influence of canopy cover. The spatial analysis of the biotic and abiotic factors involved 

in oak root rot processes can be an effective management tool predicting favourable areas regarding 

spatial heterogeneity, quantification and distribution for those parameters that limit the development 

of P. cinnamomi, thus favouring oak establishment and survival in afforestation practices. However, 

further research is needed to assess the abundance of Phytophthora spp. and other oomycetes in soils 

with more heterogeneous conditions, in order to clarify whether generalized models can be used to 

predict cfu amounts, particularly in Mediterranean dehesa and montados ecosystems and in oak 

afforestation. 

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/11/4/375/s1, Figure 

S1: Maps of clustering indices (ν) of the edaphic variables. By columns: N (nitrogen), C/N (carbon/nitrogen ratio), 

silt, sand, pH, Ca (calcium) and moisture. By rows, trees 1 to 4 (projected to 4 × 4 m surface). Darker areas show 

clustering spots of edaphic variables (ν > 1.5) are delimited by a continuous line, and the light areas show edaphic 

variables clustering gaps (ν < −1.5) are delimited by a discontinuous line. The dotted line represents the crown 

cover of each tree. In the upper right corner of each sampling unit, the general aggregation pattern (Ia) is 

indicated. Legend has no units. Table S1: Visual symptomatology and morphological parameters of the four 

trees selected for this study. Table S2: Soil Physicochemical parameters and analytical technique used. 
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