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We present a modified version of the one-dimensional sine-Gordon model that exhibits a thermodynamic,
roughening phase transition, in analogy with the two-dimensional usual sine-Gordon model. The model is
suited to study the crystalline growth over an impenetrable substrate and to describe the wetting transition of
a liquid that forms layers. We use the transfer integral technique to write down the pseudo-Schrödinger
equation for the model, which allows us to obtain some analytical insight, and to compute numerically the free
energy from the exact transfer operator. We compare the results with Monte Carlo simulations of the model,
finding a perfect agreement between both procedures. We thus establish that the model shows a phase transition
between a low-temperature flat phase with intriguing nontrivial properties and a high-temperature rough one.
The fact that the model is one-dimensional and that it has a true phase transition makes it an ideal framework
for further studies of roughening phase transitions.
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I. INTRODUCTION

The two-dimensional(2D) ordered sine-Gordon model is
today a fairly well understood problem(see, e.g.,[1–6]).
However, the random version of the model, where quenched
disorder is introduced, is far less understood and still subject
to discussion. Since thesuper-rougheningtransition(see Sec.
II below for a definition)was introduced in 1990[7], there
has been no theoretical agreement about its nature and the
properties of the super-rough phase(see[8] for a review, see
[9] for more references). Large-scale numerical simulations
or exact optimization results[10–18] were not enough to
solve the question, due to its highly demanding computa-
tional character. To circumvent this problem, in[19] we pro-
posed a modification of the 1D model, in order to have a less
demanding problem that could give us information about the
super-rough phase. In the present work, we proceed to a
detailed characterization of the ordered version of the model
in [19] and the roughening transition it presents. Having such
a thorough analysis will not only serve as grounds for our
results on super-roughening[19], but will also be relevant
from a much more general viewpoint, as a case study for 1D
phase transitions and as an alternative way to obtain infor-
mation about complicated problems in higher-dimensional
systems.

Indeed, the first of the two goals above may seem ques-
tionable in view of the fact that the subject of 1D thermody-
namic phase transitions, defined as nonanalyticities of the
free energy, has long been excluded from the attention of the
community. This exclusion comes from the “public knowl-

edge” that phase transitions cannot occur in 1D systems with
short-range interactions. However, this general belief has
risen due to the misunderstanding of van Hove’s theorem
[20,21]and abuse of Landau’s[22] argument about the en-
tropic contribution of domain walls to the free energy. In
fact, there are many known examples of this kind of transi-
tion (see[23] for a comprehensive study of the matter), al-
though most of them have been hidden using language tricks
that have made us speak about 1+1 dimensions. This has
been the case, for instance, with a number of models of the
so-called “2D wetting” that are in fact 1D in the mathemati-
cal sense, as[24,25], just to give a couple of examples. In
this sense, our work is yet another piece of detailed evidence
about the existence of 1D phase transitions. In addition, our
model has immediate applications, such as crystalline growth
over an impenetrable substrate, or “2D wetting” favoring the
formation of layers of the condensed phase. On the other
hand, as mentioned in the previous paragraph, it is clear that
the same approach can be used for the study of other 2D
problems, which may allow the formulation of a 1D coun-
terpart such as the one we present in this paper for the sine-
Gordon model.

With the above objectives in mind, the paper is organized
as follows. Section II introduces our model by discussing in
detail its predecessors, the Burkhardt and the sine-Gordon
ones. Subsequently, in Sec. III we present the transfer opera-
tor formalism and develop it into the pseudo-Schrödinger-
equation approximation that predicts a phase transition for
the model. We thus obtain analytical expressions for the
magnitudes of interest at low and high temperatures. Then in
Sec. IV we solve numerically the transfer operator problem,
showing the existence of the phase transition and computing
thermodynamical magnitudes such as the specific heat. In
Sec. V, we present the results of Monte Carlo parallel tem-
pering simulations of the model, compare them with the pre-

*Electronic address: saul@math.uc3m.es
†URL: http://gisc.uc3m.es/,saul

PHYSICAL REVIEW E 70, 061607(2004)

1539-3755/2004/70(6)/061607(10)/$22.50 ©2004 The American Physical Society061607-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29403147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ceding results, and discuss the nontrivial behavior in the flat
phase of the model. Finally, in Sec. VI we discuss the con-
sequences of all this as well as further implications of our
results.

II. MODEL DEFINITION

In order to properly introduce and motivate our model, we
find it convenient to review in some detail the two previously
proposed ones on which it is based, namely the model intro-
duced by Burkhardt in 1981[26] in the context of wetting,
and the sine-Gordon model, a widely applicable model rep-
resentative of a variety of physical systems(see[9] and ref-
erences therein). Beginning with the first one, the Hamil-
tonian of Burkhardt’s model is given by[26]

H = o
i=1

N

hJuhi+1 − hiu − Ushidj s1d

and defines a continuous counterpart of the models proposed
by Chui and Weeks[27] and van Leeuwen and Hilhorst[28]
in 1981. We are interested in the version of the model with
positive values of the variablesshi ù0d. Ushid is a function
with a positive constant valueU0 for hi øR and zero forh
.R. The variableshi can be seen as heights over a substrate
(located ath=0), defining all together an interface. This
model is exactly solvable because its transfer integral equa-
tion can be exactly mapped[26] to a Schrödinger equation,
formally a quantum square well problem in 1D with the
square well potential at the edge of the system. From quan-
tum mechanics[29], we know that this potential has a bound
state solution for a well deep enough. In Burkhardt’s statis-
tical mechanical problem, the depth of the well of the result-
ing Schrödinger equation depends onb, the inverse tempera-
ture. Hence, for low enough temperatures, the quantum
bound state maps to an interface trapped by the potential, and
therefore the interface is flat, in the sense that its width is
finite. Above the critical temperature of the model, the bound
state disappears and the interface depins from the potential
and its width diverges: it becomes rough.

The other pillar on which our model stands is the 1D
sine-Gordon model, whose Hamiltonian is

H = o
i=1

N H J

2
shi+1 − hid2 + V0f1 − cosshidgJ , s2d

where now the values of the variables are unrestricteds−`
øhi ø`d. Its 2D version is very interesting because it can
describe a number of different physical problems[9] and
because it presents arougheningphase transition. Again in
the language ofhi being the height of a surface, this transi-
tion takes place between a high-temperature rough and a
low-temperature flat phase(we will define more precisely
below what we understand by rough and flat). In the rough
phase, the roughness(also to be defined below, but in the
surface language can be thought of as the surface width) of
the system scales as lnL, the logarithm of the system size.
The roughening transition is modified by the addition of dis-
order to the system: when the cosine potential is changed

adding a quenched disorderhi
0, making it V0f1−cosshi

−hi
0dg, a super-rougheningtransition arises, characterized by

the fact that the low-temperature phase is no longer flat. The
super-roughening transition and especially the low-
temperature phase are poorly understood. One of the features
that seems to be accepted about thissuper-roughphase is
that in it the roughness scales as ln2 L, so in this sense it
would be evenrougher than the high-temperature rough
phase(hence the name super-rough). Unfortunately, the 1D
version of the sine-Gordon model, much easier to study ana-
lytically and numerically, is of no help to shed light on this
problem, as long as it has been rigorously proven[30] that it
cannot have a true thermodynamic transition(although it
does have an apparent one for any finite-size systems, even
extremely large ones[31]).

In order to better understand the phenomenology of the
2D version of the model, in[19] we introduced a new model
containing the features of Burkhardt’s and sine-Gordon mod-
els, in order to retain the most interesting characteristics of
both of them: the phase transition of the first one and the
periodic potential of the latter. The rationale for this ap-
proach was that if we had a 1D model with such a phase
transition, we could consider its disordered version and
check whether or not it reproduces the features of 2D super-
roughening. We indeed carried out this program in[19], but
a key question remained, namely whether or not the basic,
ordered, 1D model had a true thermodynamic phase transi-
tion or not. Only if the answer to this question is positive will
the approach in[19] make sense. Although our model is
specifically designed to exhibit this phase transition, and
hence the transition itself would not be surprising, we must
prove that the model behaves as expected: the fact that the
model ingredients suggest that it will indeed have a transition
by no means warrants its existence. In addition, the main
purpose of this paper is the characterization of the low-
temperature phase, which will show novel nontrivial behav-
ior as we will see below.

The Hamiltonian for our model, which we called the
Burkhardt–sine-Gordon model,(BSGM hereafter), is

H = o
i=1

N H J

2
shi+1 − hid2 + V0VshidJ , s3d

where

Vsxd = 5f1 − cossxdg −
1

V0
Usxd if x ù 0,

` if x , 0.

s4d

Thechoicefor a quadratic coupling instead of an absolute
value one as in[26] is to make our model as close as possible
to the original sine-Gordon model. In addition, the Gaussian
fluctuations of the heights that this coupling implies can be
simulated with higher efficiency using a heat bath algorithm
[31,32]. We impose no explicit restriction over the values of
hi; it is the value of the potential forhi ,0 that forces the
variable to take only positive values. This unlimited range of
definition of the variable will be useful for the formal opera-
tions we will perform. We see now thatUsxd can be seen as
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an attractive potential binding the interface to the substrate.
The cosine potential will favor the growth-forming layers at
a distance 2p from each other. For definiteness we choose
the parameters of the model to beV0=1, U0=2, andR=2p.
In that way, the substrate will attract the first two layers. We
have also performed simulations with different values of the
parameters. In that way, we can change the number of at-
tracting layers, or the critical temperature, but no new quali-
tative behavior is found.

In view of the above considerations, we expect the BSGM
to have a phase transition between a flat(or pinned)phase at
low temperatures and a rough(or depinned)one at high tem-
peratures. That is exactly what we needed in order to com-
pare to the results on 2D super-roughening in disordered
sine-Gordon models[19]. However, in that previous work,
we did little more than provide plausibility arguments and
simulation evidence for the existence of such a transition,
hence the necessity of the detailed, much more rigorous
work presented here. To characterize the transition, we define
the roughness or interface width,w, as

w2 =K 1

N
o
i=1

N

fhi − h̄g2L , s5d

where

h̄ ;
1

N
o
i=1

N

hi s6d

is the mean height, and averagesk¯l are to be understood
with respect to a statistical weight given by the Gibbs factor,
e−H/T, at equilibrium at a temperatureT. Then we say that an
interface is flat whenw is finite and does not depend on the
system size,N. In the rough phase, the interface width grows
with N and diverges in the thermodynamic limit,w→` as
N→`. Additionally, in the remainder of the paper we will
look at other possible indicators of the transition, such as the
free energy, the specific heat, or the full correlation function.

III. ANALYTICAL RESULTS

A. Transfer integral technique

The following discussion of the transfer integral(TI) tech-
nique follows that in[33] for the sine-Gordon model. The
classical canonical partition function of the BSGM[Eq. (3)]
can be written as

ZNsbd =E
−`

`

dh1E
−`

`

dh2 ¯ E
−`

`

dhNe−bH, s7d

b being the inverse temperature in units of the Boltzmann
constant. Note that we could have written the integrals in the
rangef0, d̀, but our definition ofVshid makes this unneces-
sary. In what follows, periodic boundary conditions

h1 = hN+1 s8d

are assumed, so that Eq.(7) can be replaced by

ZNsbd =E
−`

`

dh1 ¯ E
−`

`

dhN+1e
−bHdsh1 − hN+1d. s9d

To evaluateZNsbd, we proceed as follows. Thed function
is represented as an expansion in a set of complete orthonor-
mal functionswnshd,

dsh − h8d = o
n

wn
*shdwnsh8d. s10d

The functionswn are chosen to satisfy the TI equation,

E
−`

`

dh expf− bV0Ksh,h8dgwnshd = exps− bV0endwnsh8d,

s11d

where

Ksh,h8d =
1

2

J

V0
sh − h8d2 +

1

2
fVshd + Vsh8dg, s12d

wn is an eigenfunction of the TI equation with associated
eigenvalue exps−bV0end, and

Tsbd = expf− bV0Ksh,h8dg s13d

is the transfer operator of the model. Using this, we can
rewrite the partition function,

ZNsbd = o
n

exps− bV0enNdE
−`

`

dhwn
*shdwnshd

= o
n

exps− bV0enNd. s14d

In the last step, we have used the orthonormality of thewn.
The orthogonality and completeness of the eigenfunctions
are guaranteed by the Sturm-Liouville theory for Fredholm
integral equations with a symmetric kernel[34], for which
Eq. (12) is an example.

Since the single-site potential[Eq. (4)] is bounded from
below, the eigenspectrum is also bounded from below, and
we denote the lowest eigenvalue bye0. This corresponds to
exps−be0d, the maximum eigenvalue of the transfer operator
(13). In the thermodynamic limit, the free energy per particle
is then given by

f = − kBT lim
N→`

1

N
ln ZNsbd = V0e0. s15d

From this result, other thermodynamic properties can now
be derived, i.e., internal energy per particle

e=
1

N
kHl = f − T

]f

]T
s16d

and specific heat at constant volume(length)

cV =
]e

]T
= − T

]2f

]2T
. s17d

In [33], it is also shown that in the thermodynamic limit
canonical averages are given by the expression
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kgshidl =E
−`

`

uw0shdu2gshddh, s18d

which means thatuw0shdu2 can be understood as the probabil-
ity density for the variableshi.

We have been unable to exactly evaluate the free energy
(15) for the BSGM[Eq. (3)]. As an alternative, in this work
we will proceed in two different ways: through the pseudo-
Schrödinger-equation approximation associated to the TI
equation and computing numerically the eigenvalues of the
transfer operator. In what follows, we discuss the former ap-
proach as well as the approximate analytical results that can
be obtained from it. The numerical study of the full transfer
operator deserves a separate treatment and is reported in Sec.
IV.

B. Pseudo-Schrödinger equation

Defining

cnshd = expf− bV0
1
2Vshdgwnshd s19d

and using the identity

1
Î2pt

E
−`

`

dyFexpS−
1

2t
sx − yd2DG fsyd = expS t

2

d2

dx2D fsxd,

s20d

the TI equation(11) may be rewritten in the form

expS 1

2b

1
ÎV0J

ÎV0

J

d2

dh2Dcnshd

= expF− bÎV0JÎV0

J
fen − Veq− VshdgGcnshd, s21d

where

Veq=
1

2V0b
lnS bJ

2p
D . s22d

In the limit of strong coupling(J/V0→` as we keepV0J
constant, see[33] for details; it can also be understood as a
continuum limit if we include the lattice constant as an ex-
plicit parameter of the model), this equation can be expanded
to obtain, to first order inV0/J,

F−
1

2b2V0J

d2

dh2 + VshdGcnshd = sen − Veqdcnshd. s23d

This is the Schrödinger equation for a square well with a
superimposed cosine potential. The square well alone is ex-
actly solvable, and for low values ofV0 the cosine term can
be treated with perturbation theory. Equation(21) is already
an approximation for our model; from Eq.(20) we can see
that it is valid whenÎV0/J!b andÎV0/J!1/b. If we take
Boltzmann’s constant as unity, the predictions of this equa-
tion are expected to hold quantitatively only in the the tem-
perature regionÎV0/J!T!1/ÎV0/J. For this interval to
make sense,ÎV0/J has to be small enough. For instance, for
the values of the parameters we usesJ=1,V0=1d, there is no

temperature where the pseudo-Schrödinger equation is quan-
titatively accurate. However, the qualitative picture this
equation yields is completely valid and describes correctly
the phenomenology of the model. In the quantum-
mechanical problem, for some values of the parameters of
the model we have a bound state that disappears as we
change the parameters. In our statistical mechanical problem,
fixing all the parameters except the temperature will give us
a thermodynamical phase transition between a flat phase at
low temperatures, pinned by the square well potential, and a
rough phase at high temperatures, where the interface has
detached itself from the substrate’s attraction. This is the
same scenario Burkhardt found in[26]; the change of the
absolute value coupling for the quadratic one and the addi-
tion of the cosine potential modify the quantitative aspects of
the phase transition, but not the qualitative ones. Of course,
these new features in our model will give rise to new phe-
nomena in the flat phase’s behavior. Anyway, if we make a
further rough approximation and dismiss the sinusoidal part
of the potential in Eq.(23), we are left with exactly the
Schrödinger equation of a semi-infinite square well. From
elementary quantum mechanics[29] (see also[26] for the
application to Burkhardt’s model), we know that the spec-
trum of this equation presents a continuum of scattering
states. For appropriate values of the parameters(that in the
statistical mechanical problem meansT,Tc), there are one
or more bound states. AsT→Tc

−, the gap between the stron-
gest bound state and the first scattering state varies as

De ~ sTc − Td2. s24d

The quadratic temperature dependence of the gap in Eq.
(24) is responsible for the finite jump in the specific heat of
the model. We will find this in the computation of the spe-
cific heat both from the numerical transfer operator and from
Monte Carlo simulations. In Fig. 3, we show the gap be-
tween the two first eigenvalues computed from the exact nu-
merical transfer operator; the quadratic behavior predicted in
Eq. (24) is evident asT→Tc−.

For the rest of this work, without loss of generality, we
will take the coupling constantJ=1. We can do this because
the effect of changingJ can be taken into account rescaling
V0, U0 and the temperature(and also the time scale, but in
this work we will deal only with equilibrium properties).

C. Low- and high-temperature approximations

For low enough temperatures, it is a good approximation
to suppose that all the heights fall inside the square well
potential. For a value of the width of the well ofR=2p,
inside the well there exist two minima of the cosine poten-
tial. In that case, it is reasonable to approximate the potential
by a f4 one, see Fig. 1. The good features of this choice are
that the f4 potential reproduces the two-potential minima
and that it bounds the system to them, as it grows to` as
h→ ±`. Note that if we restrict ourselves to only one
minima of the cosine potential, a parabolic potential will be
enough to reproduce the leading term. To mimic the potential
in our problem, thisf4 potential has the form(for V0=1 and
U0=2)
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Vf4shd =
sh − pd4

4p2 −
sh − pd2

2
+

p2

4
− 2. s25d

In [33], we find values for some thermodynamic properties
of a low-temperature expansion of thef4 model. Thus, we
have for the internal energy

e=
T

2
+

36T2

153 23p2 , s26d

and for the specific heat

cV =
1

2
+

72T

153 23p2 . s27d

We will see that, at low temperatures, the system chooses to
be in one single potential minimum of the two displayed in
Fig. 1. In fact, this assumption is implicit in the calculation
that leads to Eqs.(26) and (27) (see[33] for details). This
calculation approximates thef4 potential by a parabolic one
fVshd=V0h

2g, and then introduces the higher-order correc-
tions.

The same procedure can be used with the sine-Gordon
model instead of thef4 model. It also seems a reasonable
choice to approximate theT→0 regime using this potential.
In the end, as both models have the same leading term, the
differences between them will be small. We will compare the
expressions arising from both of them with the results of our
simulations, and find that both of them describe remarkably
well physical magnitudes whenT→0. From [33], we have
the following expressions for the low-temperature sine-
Gordon model:

e=
T

2
+ 2FST

8
D2

+ ST

8
D3

+ ¯ G , s28d

cV =
1

2
+ 2F2T

82 +
3T2

83 + ¯ G . s29d

Both these approximations suppose the system is trapped
in a single well of the potential, and it can be seen that this
implies that the system is in a flat phase[31]. So agreement
with these results is a signal of a flat phase.

Restricting ourselves to the lowest-order approximation
for vanishing temperatures, that is, a flat system trapped in a
single parabolic potential, it is straightforward to calculate
the roughness and correlation functions, as was done in[31].
The parameter of the parabolic potential has to beV0+U0.
For the roughness we obtain

w2sTd =
T

Îs2 + V0 + U0d2 − 4
. s30d

We define the height-difference correlation function as

Csrd =K 1

N
o

j

fhj − hj+rg2L . s31d

It can be shown that the parabolic potential approximation
yields for it

Csrd =
2T

Îs2 + V0 + U0d2 − 4
f1 − Ccsrdg, s32d

where

Ccsrd = HS1 +
V0 + U0

2
DF1 −Î1 −S 2

2 + V0 + U0
D2GJr

.

s33d

In the asymptotic limitr →`, Ccsrd→0, and we have that
Cs`d=2w2.

In the high-temperature phase, the potential effectively
vanishes and we are left with the quadratic coupling alone:
this is the Edwards-Wilkinson model[35]. The predictions
for the internal energyse=T/2+constdand the specific heat
scV=1/2d are expected to hold in the rough phase of our
model. However, the prediction for the interface width is not
so accurate: the existence in our model of an impenetrable
substrate changes the statistics of the rough interface.

IV. NUMERICAL TRANSFER OPERATOR RESULTS

The eigenvalue problem in Eq.(11) can be solved dis-
cretizing the transfer operator in Eq.(13) and evaluating nu-
merically the eigenvalues of the resulting matrix(see
[33,36,37]; see[38] for a detailed account). The relevant
parameters of the discretization of the operator areDh, the
discretization length, andM, the number of points consid-
ered, that is, the size of the matrix. From them we obtain
immediately the interval where the discretized variable takes
values,f0,hmaxg, wherehmax=sM −1dDh. The two sources of
error of this numerical procedure are the discretization of the
real variableh and the cutoff of the variable range athmax. In
the limit Dh→0 andMDh→` (that is,hmax→`), this nu-
merical approach is exact.

A thermodynamic phase transition takes place when there
is a nonanalyticity in the free energy. We have seen in Eq.
(15) that in the thermodynamic limit, the free energy is de-

FIG. 1. Approximation of the potential inside the square well by
a f4 potential. The continuous line is the BSGM potential between
0 and 2p. The dashed line is thef4 potential we use to approximate
it.
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termined by the largest eigenvalue of the transfer matrix. As
discussed below Eq.(24), the vanishing of the gap between
the largest two eigenvalues leads to a singularity. To find the
point of a phase transition, we have to find a minimum of
the gap and show that the minimum goes to zero as we
increaseM.

In Fig. 2, we show the first three eigenvalues of the dis-
cretized transfer operator with our standard set of param-
eters,V0=1, U0=2, andR=2p. We clearly see that the first
two eigenvalues become very close nearT<10. In the inset,
we show the minimum ofDe that indicates the temperature
of the candidate transition. The slope ofe0 does not change
discontinuously atTm, the temperature of the minimum, so
the transition will be continuous and not first order.

In Fig. 3, we show the gap between the two first eigen-
values for a range of matrix sizes, keepingDh fixed. We see
that asM increases, the minimum value of the gap becomes
closer to zero. In Figs. 4 and 5, we perform a finite-size

scaling to check that the minimum of the gap,Demin, goes to
zero, and how the different temperatures for the minimum go
to the critical temperature,Tc. We see, as observed in[36] for
a different model, that bothDemin and Tm scale withM−2

when we changeM keepingDh fixed. Of course, this scaling
is supposed to improve for greater matrix sizes, and this
aspect is important especially for smallDh. In Fig. 4, we see
how asM increases,Demin goes to zero. It may seem contra-
dictory that as we take a better(smaller)Dh, the convergence
to zero becomes worse. The explanation comes from the fact
that, as we use a smallerDh, we need a biggerM to get a
correct scaling. However, memory limitations of our comput-
ers set a limit to the values ofM we can use: we cannot go
much further thanM =4096 in a reasonable amount of time.
So, to get a better estimation ofDemin, we use only the points
with the best scaling. That is what we do forDh=1/64,
where using only the two points of greaterM, we see that the
asymptotic value is corrected in one order of magnitude. We
can then safely expectDemin→0 as M−2→0 and Dh→0.
This means that in fact we have a true thermodynamic phase
transition, as predicted by the pseudo-Schrödinger approxi-
mation. The critical temperatureTc can be inferred from the
data in Fig. 5. The data coming from the smallest values of
Dh are supposed to be the best ones, and again we have used

FIG. 2. Three first eigenvalues forM =4096 andDh=1/32. In-
set: DifferenceDe=exps−be0d−exps−be1d vs T. The minimum
gives the temperature of the phase transition.

FIG. 3. De for different matrix sizes as indicated in the plot. The
discretization isDh=1/8. Inset: the same figure with theDe axis in
logarithmic scale. We see that asM becomes greater,De goes qua-
dratically to its minimum asT→Tc

−, as shown forM =1536 using a
quadratic fit. This is exactly the prediction of Eq.(24).

FIG. 4. Minimum value of the gap for different discretization
values and matrix sizes, as indicated in the plot.

FIG. 5. Critical temperature for different discretization values
and matrix sizes as indicated in the plot.
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only the last two values forDh=1/64 tocorrect the effects of
the lack of scaling for lowM. With the data in the figure, we
can estimate the critical temperature asTc=10.3 in our units.

We have also computed, using Eq.(17), the specific heat
from the numerically obtained eigenvalue. This is shown in
Fig. 6. The jump of the specific heat atT<10.3 is the jump
associated with the phase transition. The peak atT<1.4 is a
well-known Schottky anomaly(see, e.g.,[9] and references
therein)related to the fact that the heights pass from being
mostly in one well of the cosine potential to expand to dif-
ferent wells. There is an extra feature, namely the narrow
peak atT<0.4. If we look at the gapDe between the two
first eigenvalues, it effectively has a minimum at that tem-
perature, which would make us think of an additional phase
transition. Furthermore, that transition would have a physical
interpretation. In Fig. 7, we represent the square value of the
first eigenvalue of the transfer operator, which as we saw in
Eq. (18) has the interpretation of the probability density of
hi. In the figure, we see that at the temperature of the transi-
tion (T<0.77 for the parameters of the figure) the heights
pass from being almost all in the lowesth well of the cosine
potential (the potential well with the minimum ath=0) to
being in the highesth one (the well with minimum ath
=2p). This “transition,” however, does not survive a finite-

size study: as, keepinghmax fixed, we makeDh smaller, the
temperature of the transition goes to zero, showing us that it
is nothing but a result of the discretization and the numerical
technique employed. Our Monte Carlo simulations will con-
firm this, as they show all the way down to the lowest tem-
perature we have simulated, belowT=0.1, that the well pre-
ferred by the heights is the highesth one(see Sec. V and Fig.
12 below). Upon this observation, one question immediately
arises: if both the first and the second well of the cosine
potential are energetically equally favorable, why does the
system choose as the equilibrium one the second? The reason
is that entropically they are not the same, and the configura-
tion of the heights in the highesth well has greater entropy.
The reason for this is that the only escape a heighthi has
from the lowesth well is going to the highesth one (at low
enough temperatures at which bigh differences are very un-
likely). But from the highesth well, it can escape to the
lowest h one, or to the next cosine well outside the
Burkhardt-like square well. So the two wells are not sym-
metrical, and the configurations in the highesth one have
higher entropy. In that way, what we see in the lowest-
temperature curves in Fig. 7 would be in fact a metastable
state with higher free energy than the true equilibrium one,
the heights in the highesth well.

V. MONTE CARLO SIMULATIONS

To confirm the conclusions drawn from the analytical
simulations on the existence of a phase transition, we have
resorted to parallel tempering Monte Carlo simulations
[31,39,40]. Representative configurations at a given tempera-
ture are generated with a heat bath algorithm[31,32], in
which new valueshi8 for the height at sitei are proposed
according to the rule

hi8 =
hi−1 + hi+1

2
+ jÎ T

2J
, s34d

j being a Gaussian random variable of zero mean and unit
variance, and are accepted with a probability minf1,e−dH/Tg
with dH=fVshi8d−Vshidg. The reason to accept or reject us-
ing only the potential term in the Hamiltonian is that the
proposal in Eq.(34) exactly reproduces the quadratic cou-
pling fluctuations, which are Gaussian. Since that term is
already fully included in the proposal, we do not need it in
the acceptance rate.

The parallel tempering algorithm then considers simulta-
neous copies of the system at different temperatures, allow-
ing exchange of configurations between them. This is par-
ticularly efficient for low-temperature configurations, which
are most susceptible to being trapped in metastable regions.
The simulation starts using a single system copy(replica)at
the highest temperature of interest. After simulating it, we
get the temperature for the next replica from the energy fluc-
tuations. We repeat the same process until we have a set of
temperatures that covers the whole range of interest. Then
we run a parallel tempering simulation of all replicas and
from it get improved values of the temperature set. This au-
totuning process continues until we have an almost perfect

FIG. 6. Specific heat as a function of temperature obtained from
the discretized transfer operator forDh=1/32 andM =4096.

FIG. 7. Probability density ofh for different temperatures
around the narrow peak of the specific heat forM =1440 andhmax

=100 sDh=5/72d.

EQUILIBRIUM ROUGHENING TRANSITION IN A ONE-… PHYSICAL REVIEW E 70, 061607(2004)

061607-7



measure of the specific heat, which shows that we are using
a near to optimal temperature set, and at the same time that
the different replicas are properly equilibrated. After allow-
ing this last temperature set replicas run for further equilibra-
tion, we start the measuring run.

The parameters we have used for our simulations, as al-
ready said, areV0=1, U0=2, andR=2p. We also ran simu-
lations with different values of the parameters without find-
ing qualitative differences. We have made simulations for
system sizes ofN=500,N=1000, andN=2000, although for
simplicity we do not present results forN=500. In Fig. 8 we
plot the internal energy per particle. We see that the results
for both system sizes agree perfectly, and that the agreement
with the theoretical predictions for low temperature[Eqs.
(26) and(28)] is quite remarkable. At high temperature it has
the predicted slope 0.5, and we see atT.10 the change in
the slope indicating the temperature of the phase transition.
Figure 9 shows the specific heat obtained from the simula-
tions. We see that the coincidence between both system sizes

and the numerical transfer operator result is perfect, except in
the low-temperature region, where we have seen that the
numerical transfer operator introduces the spurious transi-
tion, and in the region of the phase transition, where small
discrepancies due to finite-size effects arise. As should be
expected, the transition is more abrupt for the largest system
size, N=2000. This agreement between the results of two
completely different approaches—the numerical transfer op-
erator and the Monte Carlo simulations—provides firm
grounds to our claims. In Fig. 10, we see how the specific
heat has an asymptotic behavior asT→0, in agreement with
approximations(27) and (29).

As the most important verification of the transition, Fig.
11 shows the squared roughness. For temperatures above the
phase transition,w2 becomes dependent on the system size
and diverges withN, showing us that we are in a rough
phase. BelowTc, the results for both system sizes are the
same, and asT→0 we see the behavior predicted in Eq.(30).
The step in the roughness betweenT.1 andT.1.5 is an

FIG. 8. Internal energy per particle obtained from Monte Carlo
simulations. Inset: display of the low-temperature region and com-
parison with the predictions of Eqs.(26) and (28). Note that the
zero-temperature energy is shifted by −2 with respect to Eqs.(26)
and(28) to take into account the square-well potential. Lines are as
indicated in the plot. At this scale, the predictions of the sine-
Gordon and thef4 models(in the inset)are indistinguishable.

FIG. 9. Specific heat from Monte Carlo simulations; comparison
is made with the numerical transfer operator result. Error bars of the
simulations are of the size of the symbols or smaller. Symbols and
lines are as indicated in the plot.

FIG. 10. Specific heat from Monte Carlo simulations at low
temperatures compared with the predictions of Eqs.(27) and (29).
The symbols are simulation results for different system sizes as
indicated in the plot. Error bars are of the size of the symbols. The
dashed–double-dotted line is the prediction of Eq.(27) and the dot-
ted one is the prediction of Eq.(29).

FIG. 11. Left: squared roughnessw2 vs T. Right: zoom of a
lower-temperature region. Note the perfect overlap of the results for
the two different system sizes below the transition temperature. In-
set: yet another zoom of an even lower-temperature region, where
we can see the comparison between simulation results and the pre-
diction of Eq.(30).
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effect of the Schottky anomaly[31] we have already men-
tioned. BetweenT.2 andT.4, we see a little plateau in the
roughness curve. This plateau is caused by the dominating
part that the kinks formed between the lowesth well and the
highesth one play at these temperatures, while the relaxation
of the heights in each well as temperature goes down is al-
most screened by the effect of the kinks in the roughness. At
the lowest temperatures, belowT.1, all effects of kinks
disappear, and the interface is trapped in the highesth well in
the square potential, as we already noted above and shown in
Fig. 12. This is related to the apparent phase transition stud-
ied in [31].

In Fig. 13, we see the height-difference correlation func-
tion, scaled by temperature, from the simulations withN
=2000. All the curves corresponding to temperatures higher
than Tc collapse to a single curve. This is the expected be-
havior for the high-temperature rough phase, as the potential
term in the Hamiltonian is expected to be irrelevant at these
temperatures, leaving us only with the quadratic coupling,
which is the Edwards-Wilkinson model[35] that predicts
exactly this independence ofT for Csrd /T, see also[9]. The
first curve below this collapse is the curve forT=10.26. So,
from our simulations we obtainTc=10.26, in excellent agree-
ment with the numerical transfer operator result. ForN
=1000 (not shown), we obtainTc=10.31 and the same be-

havior depicted in Fig. 13. Finally, note the agreement be-
tween the prediction of Eq.(32) and the actual low-
temperature correlation functions we find in simulations. We
see again in Fig. 13 the effect of kinks that appeared in the
roughness betweenT.2 andT.4: the temperature scaled
height-difference correlation function has a nonmonotonous
behavior with temperature betweenT=3.99 andT=1.62. In
this range, the different functions(without scaling)are al-
most independent of temperature, so the scaled functions
have higher values as we reduce temperature. Note that this
behavior only appears above certain length scale. At very
short scales, the effect of kinks has little importance(as we
need a certain system size to have probabilities of kinks to
appear)and the relaxation of heights continues with decreas-
ing temperature.

VI. CONCLUSIONS

We have studied in detail a model first proposed by us
[19], which combines the model proposed by Burkhardt in
[26] and the well known sine-Gordon model. We show here
by analytic approximations and by two different numerical
methods(transfer operator and Monte Carlo simulation) that
it has a continuous phase transition between a high-
temperature rough phase and a low-temperature flat one. We
have characterized the thermodynamics of the model, estab-
lishing its nontrivial behavior in the flat phase due to inter-
action of the two kinds of forces(periodic potential and sub-
strate attraction)present in it. This gives rise to the existence
of a temperature region(betweenT.1.6 andT.4.0) where
physical magnitudes of the interface as roughness and spatial
correlations are quite independent of the temperature. In ad-
dition, our work also stands as a careful study of a 1D ther-
modynamical phase transition. While we hope our results
will stimulate further studies in this field, misunderstood for
a long time, we want to add a few caveats about how nu-
merical results can lead to misleading conclusions. First, we
have seen that the numerical analysis of the transfer operator
produced an artifact which looked like a second phase tran-
sition in the low-temperature regime. Second, we have
shown in a previous paper[31] that simulations can yield
results reminiscent of a true phase transition even for ex-
tremely large system sizes, whereas it is rigorously known
[30] that such a transition is impossible. Therefore, it must be
borne in mind that only a judicious combination of theoreti-
cal results, numerical analysis, and simulations may provide
firm grounds for claims of the existence of phase transitions
in models that are not exactly solvable. This is even more
important in the case of 1D systems, where the debate is
contaminated by the false prejudices against their own exis-
tence[23].

Finally, we want to stress that the results we have ob-
tained for this model suggest a more amenable analytical and
computational way to study the properties of modified ver-
sions of the 2D sine-Gordon model, as we did in[19] for the
random substrate version. As our model has a transition be-
tween a low-temperature flat phase and a high-temperature
rough one, just like the 2D sine-Gordon model without dis-
order, in that work we showed how the addition of disorder

FIG. 12. Typical interface configuration at low temperatures.
This one is for theN=2000 Monte Carlo simulation atT=0.0981.

FIG. 13. Height difference correlation functions scaled by the
temperature from theN=2000 simulation. Temperatures are(from
up to down of the greatest value:T=14.0, 10.26, 9.53, 8.56, 7.80,
6.90, 1.62, 3.99, 1.12, 0.995, 0.836, 0.697, 0.0981).
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to our model can give us insight into what happens in the
low-temperature phase of the 2D random sine-Gordon
model. We believe that the same 1D approach to 2D prob-
lems will prove fruitful in many other contexts. Its two main
advantages are that usually 1D models are more amenable to
analytical treatment than 2D ones, and that simulating a 1D
model requires much less computational effort. We hope that

many new insights will be obtained following this line of
research.
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