View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Universidad Carlos Il de Madrid e-Archivo
PHYSICAL REVIEW E 70, 061607(2004)

Equilibrium roughening transition in a one-dimensional modified sine-Gordon model
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We present a modified version of the one-dimensional sine-Gordon model that exhibits a thermodynamic,
roughening phase transition, in analogy with the two-dimensional usual sine-Gordon model. The model is
suited to study the crystalline growth over an impenetrable substrate and to describe the wetting transition of
a liquid that forms layers. We use the transfer integral technique to write down the pseudo-Schrddinger
equation for the model, which allows us to obtain some analytical insight, and to compute numerically the free
energy from the exact transfer operator. We compare the results with Monte Carlo simulations of the model,
finding a perfect agreement between both procedures. We thus establish that the model shows a phase transition
between a low-temperature flat phase with intriguing nontrivial properties and a high-temperature rough one.
The fact that the model is one-dimensional and that it has a true phase transition makes it an ideal framework
for further studies of roughening phase transitions.
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[. INTRODUCTION edge” that phase transitions cannot occur in 1D systems with
. . ] ~ short-range interactions. However, this general belief has
The two-dimensional2D) ordered sine-Gordon model is risen due to the misunderstanding of van Hove's theorem
today a fairly well understood problerfsee, e.g.[1-6]).  [20,21]and abuse of Landauj22] argument about the en-
However, the random version of the model, where quenchegtopic contribution of domain walls to the free energy. In
disorder is introduced, is far less understood and still subjedict, there are many known examples of this kind of transi-
to discussion. Since truper-rougheningransition(see Sec. tion (see[23] for a comprehensive study of the majteal-
Il below for a definition)was introduced in 19907], there  though most of them have been hidden using language tricks
has been no theoretical agreement about its nature and thigat have made us speak about 1+1 dimensions. This has
properties of the super-rough phasee[8] for a review, see  been the case, for instance, with a number of models of the
[9] for more references). Large-scale numerical simulationso-called “2D wetting” that are in fact 1D in the mathemati-
or exact optimization resultgl0-18] were not enough to cal sense, af24,25], just to give a couple of examples. In
solve the question, due to its highly demanding computathis sense, our work is yet another piece of detailed evidence
tional character. To circumvent this problem [k®]we pro- ~ about the existence of 1D phase transitions. In addition, our
posed a modification of the 1D model, in order to have a les§'0del has immediate applications, such as crystalline growth

demanding problem that could give us information about thé?Ver an impenetrable substrate, or “2D wetting” favoring the
super-rough phase. In the present work, we proceed to [grmation of layers of the condensed phase. On the other
! and, as mentioned in the previous paragraph, it is clear that

detailed characterization of the ordered version of the mod lne same approach can be used for the study of other 2D
in [19]and the roughening transition it presents. Having suc roblems, which may allow the formulation of a 1D coun-

a thorough analysis will r}ot only SErve as grounds for ou terpart such as the one we present in this paper for the sine-
results on super-roughenirjd9], but will also be relevant Gordon model

frr(:m a much more ge(:jneral V|ev|vpomt,_ as acase Stl;JdY f(_)rle With the above objectives in mind, the paper is organized
phase trat?smons anl_ asdan aglarnatwe vr;@;] tog tain inforzs follows. Section I introduces our model by discussing in
mation about complicated problems in higher-dimensionayeqi its predecessors, the Burkhardt and the sine-Gordon

systems. ones. Subsequently, in Sec. Il we present the transfer opera-
. o : Sor formalism and develop it into the pseudo-Schrodinger-
tionable in view of the fact that the subject of 1D thermody- o4 ation approximation that predicts a phase transition for
namic phase transitions, defined as nonanalytlcm(_as of thﬁ1e model. We thus obtain analytical expressions for the
free energy, ha§ long bgen excluded from th(?, attention of thﬁ1agnitudes of interest at low and high temperatures. Then in
community. This exclusion comes from the “public know- Sec. IV we solve numerically the transfer operator problem,
showing the existence of the phase transition and computing
thermodynamical magnitudes such as the specific heat. In
*Electronic address: saul@math.uc3m.es Sec. V, we present the results of Monte Carlo parallel tem-
TURL: http://gisc.uc3m.esfsaul pering simulations of the model, compare them with the pre-
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ceding results, and discuss the nontrivial behavior in the flahdding a quenched disordeh?, making it Vg[1-cosh,
phase of the model. Finally, in Sec. VI we discuss the con—h?)], a super-rougheningransition arises, characterized by
sequences of all this as well as further implications of ourthe fact that the low-temperature phase is no longer flat. The
results. super-roughening transition and especially the low-
temperature phase are poorly understood. One of the features
that seems to be accepted about thiper-roughphase is

that in it the roughness scales ag lln so in this sense it

In order to properly introduce and motivate our model, wewould be evenrougher than the high-temperature rough
find it convenient to review in some detail the two previously Phase(hence the name super-roygkunfortunately, the 1D
proposed ones on which it is based, namely the model intro\lerSiOI'l of the sine-Gordon model, much easier to StUdy ana-
duced by Burkhardt in 198[26] in the context of wetting, Iytically and numerically, is of no help to shed light on this
and the sine-Gordon model, a widely applicable model repProblem, as long as it has been rigorously prof@di that it
resentative of a variety of physical systefsse[9] and ref- ~ cannot have a true thermodynamic transiti@ithough it
erences therein). Beginning with the first one, the Hamil-does have an apparent one for any finite-size systems, even

tonian of Burkhardt’s model is given Hy26] extremely large onef31]).
In order to better understand the phenomenology of the

2D version of the model, ifl9] we introduced a new model
H= 2 {J[his1 = hil = U(h)} (1) containing the features of Burkhardt's and sine-Gordon mod-
=1 els, in order to retain the most interesting characteristics of
and defines a continuous counterpart of the models proposduth of them: the phase transition of the first one and the
by Chui and Week§27] and van Leeuwen and Hilhorg28]  periodic potential of the latter. The rationale for this ap-
in 1981. We are interested in the version of the model withproach was that if we had a 1D model with such a phase
positive values of the variablgs, =0). U(h;) is a function  transition, we could consider its disordered version and
with a positive constant valug, for h;<R and zero forh ~ check whether or not it reproduces the features of 2D super-
>R. The variables can be seen as heights over a substratéoughening. We indeed carried out this progranjif], but
(located ath=0), defining all together an interface. This a key question remained, namely whether or not the basic,
model is exactly solvable because its transfer integral equaerdered, 1D model had a true thermodynamic phase transi-
tion can be exactly mappg@6] to a Schrodinger equation, tion or not. Only if the answer to this question is positive will
formally a quantum square well problem in 1D with the the approach inf19] make sense. Although our model is
square well potential at the edge of the system. From quarspecifically designed to exhibit this phase transition, and
tum mechanic$29], we know that this potential has a bound hence the transition itself would not be surprising, we must
state solution for a well deep enough. In Burkhardt's statisprove that the model behaves as expected: the fact that the
tical mechanical problem, the depth of the well of the result-model ingredients suggest that it will indeed have a transition
ing Schrodinger equation depends @rthe inverse tempera- by no means warrants its existence. In addition, the main
ture. Hence, for low enough temperatures, the quanturpurpose of this paper is the characterization of the low-
bound state maps to an interface trapped by the potential, ari@mperature phase, which will show novel nontrivial behav-
therefore the interface is flat, in the sense that its width idor as we will see below.
finite. Above the critical temperature of the model, the bound The Hamiltonian for our model, which we called the
state disappears and the interface depins from the potentiBlurkhardt—sine-Gordon modgBSGM hereafter), is
and its width diverges: it becomes rough.

IIl. MODEL DEFINITION

N

The other pillar on which our model stands is the 1D _ J Y
sine-Gordon model, whose Hamiltonian is H= z{z(h”l h)”+ VoV(hy) )
N J h
H=3 {;hiﬂ— )2+ Vol 1 - cosho]}, (2) "here
i=1
1 .
where now the values of the variables are unrestri¢ted V(x) = [1-cosk)] - VOU(X) if x=0, 4)

<h;<). Its 2D version is very interesting because it can
describe a number of different physical problef® and
because it presentsraugheningphase transition. Again in Thechoicefor a quadratic coupling instead of an absolute
the language oh; being the height of a surface, this transi- value one as ifi26]is to make our model as close as possible
tion takes place between a high-temperature rough and t the original sine-Gordon model. In addition, the Gaussian
low-temperature flat phas@ve will define more precisely fluctuations of the heights that this coupling implies can be
below what we understand by rough and)fldn the rough  simulated with higher efficiency using a heat bath algorithm
phase, the roughnegalso to be defined below, but in the [31,32]. We impose no explicit restriction over the values of
surface language can be thought of as the surface width h;; it is the value of the potential foln; <0 that forces the
the system scales as Iln the logarithm of the system size. variable to take only positive values. This unlimited range of
The roughening transition is modified by the addition of dis-definition of the variable will be useful for the formal opera-
order to the system: when the cosine potential is changetions we will perform. We see now théat(x) can be seen as

© if x<O.

061607-2



EQUILIBRIUM ROUGHENING TRANSITION IN A ONE-.. PHYSICAL REVIEW E 70, 061607(2004)

an attractive potential binding the interface to the substrate. To evaluateZy(B), we proceed as follows. Th&function
The cosine potential will favor the growth-forming layers at is represented as an expansion in a set of complete orthonor-
a distance 2 from each other. For definiteness we choosemal functionsg,(h),
the parameters of the model to Wg=1, Uy=2, andR=27.
In that way, the substrate will attract the first two layers. We sth-h)=> (p;(h)(pn(h')_ (10)
have also performed simulations with different values of the n
parameters. In that way, we can change the number of at- _ ) )
tracting layers, or the critical temperature, but no new quali-The functionse, are chosen to satisfy the Tl equation,
tative behavior is found. "

In view of the above considerations, we expect the BSGM _ ’ - a /
to have a phase transition between a (tatpinned)phase at f_m dh expt AV () = expt BVocn) (),
low temperatures and a rougbr depinnedpne at high tem- (11)
peratures. That is exactly what we needed in order to com-
pare to the results on 2D super-roughening in disorderegihere
sine-Gordon model§19]. However, in that previous work,
we did little more than provide plausibility arguments and 1J , 1
simulation evidence for the existence of such a transition, K(h,h") = Ev(h‘ )2+ SV + V)], (12)
hence the necessity of the detailed, much more rigorous 0
work presented here. To characterize the transition, we defing, is an eigenfunction of the Tl equation with associated

the roughness or interface widtl, as eigenvalue exp{BVye,), and
N
w=( <3 [h =), 5 T(B) = expl- BVoK (h,h")] (13)
= is the transfer operator of the model. Using this, we can
where rewrite the partition function,
N
— :]_2 o .
h=y=h © ZM(B) =2 expl- BVoeN) f dher(h)eq(h)
= - .
is the mean height, and averages) are to be understood - ~ BV-eN 14
with respect to a statistical weight given by the Gibbs factor, % X BVoeN)- (14)

e T at equilibrium at a temperatufie Then we say that an
interface is flat whenv is finite and does not depend on the In the last step, we have used the orthonormality of ¢ghe
system sizeN. In the rough phase, the interface width grows The orthogonality and completeness of the eigenfunctions
with N and diverges in the thermodynamic limit,—% as  are guaranteed by the Sturm-Liouville theory for Fredholm
N— o, Additionally, in the remainder of the paper we will integral equations with a symmetric kerri@4], for which
look at other possible indicators of the transition, such as th&g. (12) is an example.
free energy, the specific heat, or the full correlation function. Since the single-site potentifiEq. (4)] is bounded from
below, the eigenspectrum is also bounded from below, and
Il ANALYTICAL RESULTS we denote the lowest eigenvalue by This corresponds to
A. Transfer integral technique exppBey), the maximum eigenvalue of the transfer operator
(13). In the thermodynamic limit, the free energy per particle

The following discussion of the transfer integ¢@l) tech- is then given by

nique follows that in[33] for the sine-Gordon model. The
classical canonical partition function of the BSGHQq. (3)]

1
can be written as f=—kgT lim N In Zy(B) = Voep. (15)
N-—so0
Z\(B) :J dhlf dhz--.f dhye?%, (7) From this result, other thermodynamic properties can now
— —o —o be derived, i.e., internal energy per particle

B being the inverse temperature in units of the Boltzmann 1 Jf
constant. Note that we could have written the integrals in the e=—(H)=f-T— (16)
range[0, ), but our definition ofV(h;) makes this unneces- N ar
sary. In what follows, periodic boundary conditions

hy = hys ®)

and specific heat at constant voluriength)

oe P
are assumed, so that E@) can be replaced by CvEor = Tﬁ.- (17)
Z\(B) :f dhl"'f dhy.1€ P 5(h = hye).  (9) In [33], it is also shown that in the thermodynamic limit
— —o canonical averages are given by the expression
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temperature where the pseudo-Schrodinger equation is quan-
titatively accurate. However, the qualitative picture this
equation vyields is completely valid and describes correctly
which means thdtp,(h)|? can be understood as the probabil- the  phenomenology of the model. In the quantum-
ity density for the variables;. mechanical problem, for some values of the parameters of
We have been unable to exactly evaluate the free energj® model we have a bound state that disappears as we
(15) for the BSGM(EQ. (3)]. As an alternative, in this work Cchange the parameters. In our statistical mechanical problem,
we will proceed in two different ways: through the pseudo-fixing all the parameters except the temperature will give us
Schrédinger-equation approximation associated to the T& thermodynamical phase transition between a flat phase at
equation and computing numerically the eigenvalues of théow temperatures, pinned by the square well potential, and a
transfer operator. In what follows, we discuss the former apfough phase at high temperatures, where the interface has
proach as well as the approximate analytical results that ca#eétached itself from the substrate’s attraction. This is the
be obtained from it. The numerical study of the full transferSame scenario Burkhardt found [@6]; the change of the
operator deserves a separate treatment and is reported in S@solute value coupling for the quadratic one and the addi-

(9(h)) = f_ |eo(h)[Pg(h)dh, (18)

IV.

B. Pseudo-Schrédinger equation

Defining

Yin(h) = exe] = BVo3 V() Jen(h) (19)
and using the identity
1 “ L mve) o = 1d_2>
2 _wdy{eXp< 2t(>< y) )}f(y)—eXL(z o f(x),
(20)

the Tl equation11) may be rewritten in the form

1 1 /v dz)
==/ |y(h
ex ZB \”VOJ J dh2 Ipﬂ( )

— |V
= exp[— BVVod \E[en ~Veq™ V(h)]} (), (21)

o2

In the limit of strong coupling(J/Vy—o as we keepVyd
constant, se€33] for details; it can also be understood as a
continuum limit if we include the lattice constant as an ex-

where

1
2VoB

Bl
2T

Veq= (22)

plicit parameter of the model), this equation can be expande

to obtain, to first order in/y/J,
d2

B mdhz + V(h):| n(h) = (&, = Veq) dn(h).  (23)
0

tion of the cosine potential modify the quantitative aspects of
the phase transition, but not the qualitative ones. Of course,
these new features in our model will give rise to new phe-
nomena in the flat phase’s behavior. Anyway, if we make a
further rough approximation and dismiss the sinusoidal part
of the potential in Eq.(23), we are left with exactly the
Schrodinger equation of a semi-infinite square well. From
elementary quantum mechanif29] (see also[26] for the
application to Burkhardt's modglwe know that the spec-
trum of this equation presents a continuum of scattering
states. For appropriate values of the paramgtbit in the
statistical mechanical problem meahs<T.), there are one

or more bound states. AB— T_, the gap between the stron-
gest bound state and the first scattering state varies as

Aex (T.-T)%. (24)

The quadratic temperature dependence of the gap in Eq.
(24) is responsible for the finite jump in the specific heat of
the model. We will find this in the computation of the spe-
cific heat both from the numerical transfer operator and from
Monte Carlo simulations. In Fig. 3, we show the gap be-
tween the two first eigenvalues computed from the exact nu-
merical transfer operator; the quadratic behavior predicted in
Eq.(24)is evident asT—Tc .

For the rest of this work, without loss of generality, we
will take the coupling constart=1. We can do this because
the effect of changing can be taken into account rescaling
V,, Up and the temperatur@nd also the time scale, but in
H]is work we will deal only with equilibrium propertigs

C. Low- and high-temperature approximations

For low enough temperatures, it is a good approximation
to suppose that all the heights fall inside the square well

This is the Schrodinger equation for a square well with apotential. For a value of the width of the well &=2m7,
superimposed cosine potential. The square well alone is exnside the well there exist two minima of the cosine poten-

actly solvable, and for low values &f, the cosine term can
be treated with perturbation theory. Equati@i) is already
an approximation for our model; from E¢R0) we can see
that it is valid when\Vy/J< B and \Vy/J<1/B. If we take

tial. In that case, it is reasonable to approximate the potential
by a ¢* one, see Fig. 1. The good features of this choice are
that the ¢* potential reproduces the two-potential minima
and that it bounds the system to them, as it grows»tas

Boltzmann’s constant as unity, the predictions of this equah— +c. Note that if we restrict ourselves to only one

tion are expected to hold quantitatively only in the the tem-

perature regiomVo/J<T<1/\Vy/J. For this interval to
make sense/V,y/J has to be small enough. For instance, for
the values of the parameters we (3e1,\,=1), there is no

minima of the cosine potential, a parabolic potential will be
enough to reproduce the leading term. To mimic the potential
in our problem, thisp* potential has the fornffor V,=1 and
Uo=2)
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Both these approximations suppose the system is trapped

in a single well of the potential, and it can be seen that this

implies that the system is in a flat phg$d]. So agreement

i with these results is a signal of a flat phase.

Restricting ourselves to the lowest-order approximation

for vanishing temperatures, that is, a flat system trapped in a
single parabolic potential, it is straightforward to calculate

- the roughness and correlation functions, as was dof&lh

The parameter of the parabolic potential has toVge U,,.
For the roughness we obtain

(4] o3

1
1
\
1
\
\
\
1
\
1
\
vt | “
1
\
1 1
\
\
\
\

-
WA(T) = — : (30)
V2 +Vy+Up?-4
FIG. 1. Approximation of the potential inside the square well by \We define the height-difference correlation function as
a ¢* potential. The continuous line is the BSGM potential between
0 and 27. The dashed line is th¢* potential we use to approximate 1
it e PP cr) = <NE [h - h,-+,]2>. (31)
j
Voulh) = (h-m* (h-m)? . 12 , 025) Itéﬁ? ft())? i?hown that the parabolic potential approximation
V=T 2 4 “ Y
C(r)= all 1 32
In [33], we find values for some thermodynamic properties (= V(2 + Vy+ Ug)2 - 4[ -Gl (32)
. ot Vo
of a low-temperature expansion of tlg¢ model. Thus, we
have for the internal energy where
2 r
T, %67 6 ccm:{(“_voguo){l_\/1_(—2 2 U)”
2" 15X 2272’ Vot Ho
(33)
and for the specific heat In the asymptotic limitr —co, C.(r)—0, and we have that
C() =202,
o=ty 12T 1)
VT2 15x 2842

In the high-temperature phase, the potential effectively
vanishes and we are left with the quadratic coupling alone:

this is the Edwards-Wilkinson mod¢B5]. The predictions
We will see that, at low temperatures, the system chooses for the internal energye=T/2+const)and the specific heat
be in one single potential minimum of the two displayed in(c,=1/2) are expected to hold in the rough phase of our
Fig. 1. In fact, this assumption is implicit in the calculation model. However, the prediction for the interface width is not
that leads to Eqs(26) and (27) (see[33] for details). This

( : . _ so accurate: the existence in our model of an impenetrable
calculation approximates th#' potential by a parabolic one substrate changes the statistics of the rough interface.
[V(h)=V,yh?], and then introduces the higher-order correc-

tions.

The same procedure can be used with the sine-Gordon V- NUMERICAL TRANSFER OPERATOR RESULTS
model instead of thep* model. It also seems a reasonable The eigenvalue problem in Eqll) can be solved dis-
choice to approximate tié— 0 regime using this potential. ¢ retizing the transfer operator in E@.3) and evaluating nu-
In the end, as both models have the same leading term, thgarjcally the eigenvalues of the resulting matrisee
differences between them will be small. We will compare the[33,36,37]; seq38] for a detailed account). The relevant
expressions arising from both of them with the results of OUlarameters of the discretization of the operator e the
simulations, and find that both of them describe remarkablyiscretization length, and, the number of points consid-
well physical magnitudes when— 0. From[33], we have  greq that is, the size of the matrix. From them we obtain
the following expressions for the low-temperature sine-
Gordon model:

immediately the interval where the discretized variable takes

values,[0, hyad, Wherehp,,,=(M—=1)Ah. The two sources of
T e /T3 error of this numerical procedure are the discretization of the
S HR R

real variableh and the cutoff of the variable rangelgt,, In
the limit Ah— 0 andMAh—co (that is, hya— ), this nu-
merical approach is exact.

, A thermodynamic phase transition takes place when there
PR P AL (209) IS @ nonanalyticity in the free energy. We have seen in Eq.
Vi 2 3 . . . . .

2 8 8 (15) that in the thermodynamic limit, the free energy is de-
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10—————————1—— 06T
[ | — First eigenvalue (exp(-Be,)) ] - ii | ® Ah=1/8 .
9 |-- Second eigenvalue (exp(-le)) N 0.5F _,'I! — Ag(0)=3.7x10 .
" |-+ Third eigenvalue (exp(-Be,)) i-’,' u izh(j)l)/_lfz o
8 | N arae =4,2x |
I 04 £ e an-132
7 ] F i |- Ae©)=42x10°
exp(-Be ) Ae . 03} A Ah=1/64 .
pbe) 7 1 | f -~ Ag(0)=0.034
6 1 i |- Ae0)=0.0033
I o2kl ;i
5 # - # S T
‘ o Ca
7 001t lalst, 0'1;’/ a" ]
aF 7 46 8101214 e -
Ay o000 T o= - - |7. |7. ,
4 6 8 10 12 14 0 24107 4x107 6x107 8x10710x10°
T M2

FIG. 2. Three first eigenvalues fod =4096 andAh=1/32. In-
set: Difference Ae=expBey)—exp-Be;) vs T. The minimum
gives the temperature of the phase transition.

FIG. 4. Minimum value of the gap for different discretization
values and matrix sizes, as indicated in the plot.

Sscaling to check that the minimum of the gay,,;,, goes to

termined by the largest eigenvalue of the transfer matrix. Azero, and how the different temperatures for the minimum go

discussed below Ed24), the vanishing of the gap between e
the largest two eigenvalues leads to a singularity. To find thé0 the cnitical temperaturd,. We see, as observed(in6] for

. . . _2
point of a phase transition, we have to find a minimum of? different model, that.bomfm'” and Tp, scale V\."thM .
the gap and show that the minimum goes to zero as W‘\é\/hen we chang® keepingAh fixed. Of course, this scaling

increaseM. IS supposed to improve for greater matrix sizes, and this

In Fig. 2, we show the first three eigenvalues of the dis-aSpeCt is important especially for smah. In Fig. 4, we see

cretized transfer operator with our standard set of paramgioc\?gfsm;?;rseizegfemg‘ gé)tes toalle;OA:]t mzyczif‘/r; cgg(t:rea-
eters,Vy=1, Uy=2, andR=27. We clearly see that the first Y tem )A, g

two eigenvalues become very close n&ar10. In the inset, to zero becomes worse. The explanation comes from the fact

we show the minimum of e that indicates the temperature g;)a::;a?tss\cl:vaeli#seH%\?vrg\?élr@rﬁevr\;eorneI?rgitaa t?(;%geggotgr %ﬁtma ut-
of the candidate transition. The slope gfdoes not change 9- K y P

discontinuously afl,,,, the temperature of the minimum, so renrjcie;u?t::?rlttlz(;r;ae—zggg Smd;g ;I(\;ea_scc?nnaglseeiavmv(e)ucr?[ngfottir%g
the transition will be continuous and not first order. - '

In Fig. 3, we show the gap between the two first eigen—so’ to get a better estimation Afk,,;,, we use only the points

values for a range of matrix sizes, keepifig fixed. We see with the best scaling. That is what we do ah=1/64,

that asM increases, the minimum value of the gap become%’vhere using only the two points of greatds we see that the

closer to zero. In Figs. 4 and 5, we perform a ﬁnite_Sizeasymptonc value is corrected in one order of magnitude. We

can then safely expediey,—0 asM™2—0 and Ah—0.

This means that in fact we have a true thermodynamic phase

ML - transition, as predicted by the pseudo-Schrédinger approxi-
0.6 |'—* M=1024 - mation. The critical temperatufE. can be inferred from the
. | — M=1536 R :
. |—- Quadratic fitting| 1 data in Fig. 5. The data coming from the smallest values of

Ah are supposed to be the best ones, and again we have used

10.6F_
104f.

102
10
9.8f
96 ¥ ® Ah=1/8 .
o4k * — T _(0)=10543(3) | ]
T‘“ 92 & m Ah=1/16 J
oF A | T,(0=10364014)| ]
e an=132 ]
8.8 ‘;‘\ -- T_(0)=10.365(11)| ]
861 1y |a ah=1/64 3
84 iy |- T (0=10.06 .
82F |- T (0=10298 |7
. . - . L] : : Pl
FIG. 3. Ae for different matrix sizes as indicated in the plot. The 0.0 2X10-7 4x;0.7 6)(;0.7 8)(;0.710)(10.7
discretization isAh=1/8. Inset: the same figure with thke axis in M2
logarithmic scale. We see that Bsbecomes greated e goes qua-
dratically to its minimum a§ — T, as shown foM =1536 using a FIG. 5. Critical temperature for different discretization values
quadratic fit. This is exactly the prediction of EQ4). and matrix sizes as indicated in the plot.
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Lk ot size study: as, keepinlg,,, fixed, we makeAh smaller, the
I ] temperature of the transition goes to zero, showing us that it
1 4 is nothing but a result of the discretization and the numerical
- technique employed. Our Monte Carlo simulations will con-
091 7 firm this, as they show all the way down to the lowest tem-
e, [ | perature we have simulated, belda0.1, that the well pre-
0'8_' ] ferred by the heights is the highdsbne(see Sec. V and Fig.
07k i 12 below). Upon this observation, one question immediately
I arises: if both the first and the second well of the cosine
0.6 - potential are energetically equally favorable, why does the
| system choose as the equilibrium one the second? The reason
05— 4 % T R T is that entropically they are not the same, and the configura-

tion of the heights in the highebtwell has greater entropy.

FIG. 6. Specific heat as a function of temperature obtained fromThe reason for this IS that' the only escape a hefgtas
the discretized transfer operator fah=1/32 andM =4096. from the lowesth well is going to the highesh one (at low
enough temperatures at which iglifferences are very un-
only the last two values fakh=1/64 tocorrect the effects of likely). But from the highesth well, it can escape to the
the lack of scaling for lowM. With the data in the figure, we lowest h one, or to the next cosine well outside the
can estimate the critical temperatureTas 10.3 in our units.  Burkhardt-like square well. So the two wells are not sym-
We have also computed, using E@7), the specific heat metrical, and the configurations in the highésbne have
from the numerically obtained eigenvalue. This is shown inhigher entropy. In that way, what we see in the lowest-
Fig. 6. The jump of the specific heat Bit=10.3 is the jump temperature curves in Fig. 7 would be in fact a metastable
associated with the phase transition. The peak=afl.4 is a  state with higher free energy than the true equilibrium one,
well-known Schottky anomalysee, e.g.[9] and references the heights in the highest well.
therein)related to the fact that the heights pass from being
mostly in one well of the cosine potential to expand to dif-
ferent wells. There is an extra feature, namely the narrow V. MONTE CARLO SIMULATIONS
peak atT~0.4. If we look at the gap\e between the two
first eigenvalues, it effectively has a minimum at that tem-
perature, which would make us think of an additional phas
transition. Furthermore, that transition would have a physica
interpretation. In Fig. 7, we represent the square value of th
first eigenvalue O_f the trans_fer operator, whic_h as We saw irthich new valuesh’ for the height at sité are proposed
Eqg. (18) has the interpretation of the probability density of according to the rulle
h,. In the figure, we see that at the temperature of the transi-
tion (T=0.77 for the parameters of the figyréhe heights . hii+hig T
pass from being almost all in the lowdstvell of the cosine hi = T, + 23’
potential (the potential well with the minimum at=0) to
being in the highesh one (the well with minimum ath & being a Gaussian random variable of zero mean and unit
=277). This “transition,” however, does not survive a finite- variance, and are accepted with a probability [mie 4]
with sH=[V(h/)-V(h;)]. The reason to accept or reject us-

To confirm the conclusions drawn from the analytical
simulations on the existence of a phase transition, we have
esorted to parallel tempering Monte Carlo simulations
31,39,40]. Representative configurations at a given tempera-

re are generated with a heat bath algoritfi3d,32], in

(34)

1 . . . A
0.8 — 73] ing only t.he potential term in the Hamiltonian is t.hat the
0.6 [=1=7] proposal in Eq.(34) exactlyreproduces the quadratic cou-
ok pling fluctuations, which are Gaussian. Since that term is
0 — already fully included in the proposal, we do not need it in
' the acceptance rate.
23:22 — =078 The parallel tempering algorithm then considers simulta-
|(P| 0.4 neous copies of the system at different temperatures, allow-
°'§‘- A /L \ E[ng Iexlchafrf]_g_e otffcor?figutrations ?etweenflthemf This ish .p?r-
1 icularly efficient for low-temperature configurations, whic
0~3-_ are most susceptible to being trapped in metastable regions.
ok The simulation starts using a single system caeplica)at
0.2—:\ the highest temperature of interest. After simulating it, we
i L e e T T T T get the temperature for the next replica from the energy fluc-
¢ 24 e 80z 4h 68 0 2z 4 6 8 tuations. We repeat the same process until we have a set of

temperatures that covers the whole range of interest. Then

FIG. 7. Probability density ofh for different temperatures We run a parallel tempering simulation of all replicas and
around the narrow peak of the specific heat ¥b= 1440 andh,,,  from it get improved values of the temperature set. This au-
=100 (Ah=5/72). totuning process continues until we have an almost perfect
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8 T T T T T T T ;‘( T T ) )
127117 o] [ ® MC, N=1000 é
6 1aE r & o64r o MC, N=2000 2]
_%g- /..r‘u,' 0.621- - ¢4 36 .
-1.6F - -t J 3 -« + sine-Gordon
L7F E < 0.6 o
4} -1.8F - o .
e P OEAL T -~ ©, 0.58}
0 02 04 06 08 1.
2 E 0.56
* N=1000 ]
o I\a=2000 : 0.541-
of ¢ s
-+ sine-Gordon 0.52-
-=- high temperature| ] - .
0.5 st
2 A DR B PR R B R 0
0 2 4 6 8 10 12 14
T

) . FIG. 10. Specific heat from Monte Carlo simulations at low
_ FIG._ 8. Internal energy per particle obtained from Monte Carlotemperatures compared with the predictions of E8%) and (29).
S|m_ulat|on_s. Inset: d'SP"”FV of the low-temperature region and com-y,q symbols are simulation results for different system sizes as
parison with the predictions of Eq&26) and (28). Note that the ;yicateq in the plot. Error bars are of the size of the symbols. The

zero-temperatur.e energy is shifted by -2 with respect tp B1.  jashed—double-dotted line is the prediction of &7.,) and the dot-
and(28) to take into account the square-well potential. Lines are 33ed one is the prediction of E¢29)

indicated in the plot. At this scale, the predictions of the sine-

Gordon and thep* models(in the inset)are indistinguishable. ) ) )
and the numerical transfer operator result is perfect, except in

m e of th ific heat. which shows that we ar i the low-temperature region, where we have seen that the
easure ot the specilic heat, ch Shows that we are Using erical transfer operator introduces the spurious transi-

a near to optimal temperature set, and at the same time thﬁ n, and in the region of the phase transition, where small

the different replicas are properly equilibrated. After a“OW'discrepancies due to finite-size effects arise. As should be

Ing this last temperature set replicas run for further eqUIIIbra’expected, the transition is more abrupt for the largest system
tion, we start the measuring run.

The parameters we have used for our simulations, as a_ize, N=2000. This agreement between the results of two
ready said, ar&/y=1, Uy=2, andR=2. We also ran simu- ompletely different approaches—the numerical transfer op-

lations with different values of the parameters witho tf.nd_erator and the Monte Carlo simulations—provides firm
'nl avl\'/{at' (Ia d'fferevnc:s We hape made s'r\r,1w Iat'gnsl forgrounds to our claims. In Fig. 10, we see how the specific
INg quaitativ '_ o v _ imutatl heat has an asymptotic behaviorTas: 0, in agreement with
system sizes d=500,N=1000, andN=2000, although for L

implicit q i i its fdI=500. In Fia. 8 approximationg27) and (29).

SImpicity we do not present resuts 1= - IN Flg. o we As the most important verification of the transition, Fig.
plot the internal energy per particle. We see that the result

for both system sizes agree perfectly, and that the agreemeiﬁ shows the squared roughness. For temperatures above the
with the theoretical predictions for low temperatUi€gs. B ase transitiorw” becomes dependent on the system size

. ; ; ! and diverges withN, showing us that we are in a rough
Eﬁg);‘rg%(ig?e)(]j'Sslg;'éeor.%m:;za\?vlg' gquthlgeﬁgeézgr:g; i?‘as phase. BelowT, the results for both system sizes are the

the slope indicating the temperature of the phase transitio same, and a8—0 we see the behavior predicted in E80).

Figure 9 shows the specific heat obtained from the simula- he step in the roughness betweBr-1 andT=1.5 is an
tions. We see that the coincidence between both system sizes

T T T T T T T T T T T T
i [
2000 r—N=3000 o T
T T T T T T T v T T T T | —- N=1000 .02_
L= — Transfer operator T 16k
- « MC, N=1000 ) 1 1500} 1 “loik
| s MC, N=2000 i O1F .
s E 2 I 1 2F ol v
ook ) ] " ook {gﬁ | %0 °02°040608
| | ---+ Analytic app.
cv L ] 8k -
osf ] X [
! 500} 1 .
o7t .
P | PRl TR PR I BT T I
0.6 o 1 00246T8101214 R R R R R S R
0.5 2 1 N M 1 M 1 M 1 M 9
0 2 4 6 . 2 o2 FIG. 11. Left: squared roughnes# vs T. Right: zoom of a

lower-temperature region. Note the perfect overlap of the results for
FIG. 9. Specific heat from Monte Carlo simulations; comparisonthe two different system sizes below the transition temperature. In-
is made with the numerical transfer operator result. Error bars of theet: yet another zoom of an even lower-temperature region, where
simulations are of the size of the symbols or smaller. Symbols andve can see the comparison between simulation results and the pre-
lines are as indicated in the plot. diction of Eq.(30).
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‘}u b1 R u‘ ‘H | ‘ M “ il m’n r‘l 'W ” havior depicted i_n .Fig. 13. Finally, note the agreement be-
\ \ w e tween the prediction of Eq(32) and the actual low-

g “ ¥ “ ‘ ’ w‘ | \\ j ! ” w“ \‘ temperature correlation functions we find in simulations. We

‘ | “ I \ ‘ ‘ see again in Fig. 13 the effect of kinks that appeared in the

‘ roughness betweeh=2 andT=4: the temperature scaled

bl ] height-difference correlation function has a nonmonotonous
I ] behavior with temperature betwe@3.99 andT=1.62. In
54t - this range, the different functiongvithout scaling)are al-

- most independent of temperature, so the scaled functions
52 . have higher values as we reduce temperature. Note that this
[ _ . _ . _ . _ ] behavior only appears above certain length scale. At very

% 500 1000 1500 2000 short scales, the effect of kinks has little importaiias we
! need a certain system size to have probabilities of kinks to
FIG. 12. Typical interface configuration at low temperatures.@ppeargnd the relaxation of heights continues with decreas-
This one is for theN=2000 Monte Carlo simulation &=0.0981.  ing temperature.

5.8

effect of the Schottky anomalj31] we have already men-
tioned. BetweeM =2 andT=4, we see a little plateau in the

roughness curve. This plateau is caused by the dominating we have studied in detail a model first proposed by us
part that the kinks formed between the lowkstell and the [19], which combines the model proposed by Burkhardt in
highesth one play at these temperatures, while the relaxation26] and the well known sine-Gordon model. We show here
of the heights in each well as temperature goes down is aby analytic approximations and by two different numerical
most screened by the effect of the kinks in the rOUghneSS. Aﬁ]ethodqtransfer operator and Monte Carlo s|mu|a‘D|(bhat

the lowest temperatures, below= 1, all effects of kinks it has a continuous phase transition between a h|gh-
disappear, and the interface is trapped in the highestll in  temperature rough phase and a low-temperature flat one. We
the square potential, as we already noted above and showniave characterized the thermodynamics of the model, estab-
Fig. 12. This is related to the apparent phase transition studishing its nontrivial behavior in the flat phase due to inter-
ied in [31]. action of the two kinds of forcegeriodic potential and sub-

In Fig. 13, we see the height-difference correlation func-strate attractionpresent in it. This gives rise to the existence
tion, scaled by temperature, from the simulations With  of a4 temperature regiofbetweenT = 1.6 andT=4.0) where
=2000. All the curves corresponding to temperatures highephysical magnitudes of the interface as roughness and spatial
than T, collapse to a single curve. This is the expected becorrelations are quite independent of the temperature. In ad-
havior for the high-temperature rough phase, as the potentigition, our work also stands as a careful study of a 1D ther-
term in the Hamiltonian is expected to be irrelevant at thes%odynamicm phase transition. While we hope our results
temperatures, leaving us only with the quadratic couplingyill stimulate further studies in this field, misunderstood for
which is the Edwards-Wilkinson modg¢B5] that predicts a long time, we want to add a few caveats about how nu-
exactly this independence dffor C(r)/T, see alsd9]. The  merical results can lead to misleading conclusions. First, we
first curve below this collapse is the curve f6+10.26. So, have seen that the numerical analysis of the transfer operator
from our simulations we obtaifi;=10.26, in excellent agree- produced an artifact which looked like a second phase tran-
ment with the numerical transfer operator result. For sjtion in the low-temperature regime. Second, we have
=1000 (not shown), we obtaiT.=10.31 and the same be- shown in a previous papdB1] that simulations can yield

results reminiscent of a true phase transition even for ex-

VI. CONCLUSIONS

1000 prrrr —TT Ty . - .
__'T_] 5 (Roughphasle) ' ] tremely large system sizes, whereas it is rigorously known
L |- Low temperature approximation ) ag [30]that such a transition is impossible. Therefore, it must be
[ : %jgg ] borne in mind that only a judicious combination of theoreti-

100g cal results, numerical analysis, and simulations may provide

firm grounds for claims of the existence of phase transitions
in models that are not exactly solvable. This is even more
E important in the case of 1D systems, where the debate is
i ] contaminated by the false prejudices against their own exis-
T oo tence[23].
3 Finally, we want to stress that the results we have ob-
T T B T T ] tained for this model suggest a more amenable analytical and
0.001 O‘OII/N 0.1 computational way to study the properties of modified ver-
sions of the 2D sine-Gordon model, as we did18] for the
FIG. 13. Height difference correlation functions scaled by therandom substrate version. As our model has a transition be-
temperature from th&=2000 simulation. Temperatures gfeom  tween a low-temperature flat phase and a high-temperature
up to down of the greatest valu&=14.0, 10.26, 9.53, 8.56, 7.80, rough one, just like the 2D sine-Gordon model without dis-
6.90, 1.62, 3.99, 1.12, 0.995, 0.836, 0.697, 0.0981 order, in that work we showed how the addition of disorder
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to our model can give us insight into what happens in themany new insights will be obtained following this line of
low-temperature phase of the 2D random sine-Gordonesearch.
model. We believe that the same 1D approach to 2D prob-

lems will prove fruitful in many other contexts. Its two main
advantages are that usually 1D models are more amenable to Thjs work was supported by the Ministerio de Ciencia y

analytical treatment than 2D ones, and that simulating a 1Brecnologia of Spain through Grant Nos. BFM2003-07749-
model requires much less computational effort. We hope that05-01 and FIS2004-01001.
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