278 research outputs found
Neurocognitive outcomes in pediatric brain tumors after treatment with proton versus photon radiation: a systematic review and meta-analysis
Background: Advances in cancer treatments, particularly the development of radiation therapy, have led to improvements in survival outcomes in children with brain tumors. However, radiation therapy is associated with significant long-term neurocognitive morbidity. The present systematic review and meta-analysis aimed to compare the neurocognitive outcomes of children and adolescents with brain tumors treated with photon radiation (XRT) or proton therapy (PBRT). Methods: A systematic search was conducted (PubMed, Embase, Cochrane, and Web of Science from inception until 02/01/2022) for studies comparing the neurocognitive outcomes of children and adolescents with brain tumors treated with XRT vs. PBRT. The pooled mean differences (expressed as Z scores) were calculated using a random effects method for those endpoints analyzed by a minimum of three studies. Results: Totally 10 studies (n = 630 patients, average age range: 1–20 years) met the inclusion criteria. Patients who had received PBRT achieved significantly higher scores (difference in Z scores ranging from 0.29–0.75, all P 0.05 in main analyses or sensitivity analyses) were found for nonverbal memory, verbal working memory and working memory index, processing speed index, or focused attention. Conclusions: Pediatric brain tumor patients who receive PBRT achieve significantly higher scores on most neurocognitive outcomes than those who receive XRT. Larger studies with long-term follow-ups are needed to confirm these results.14 página
Focus on reactive nitrogen and the UN sustainable development goals
The scientific evidence assembled in this Focus Collection on 'Reactive nitrogen and the UN sustainable development goals' emphasizes the relevance of agriculture as a key sector for nitrogen application as well as its release to the environment and the observed impacts. Published work proves the multiple connections and their causality, and presents pathways to mitigate negative effects while maintaining the benefits, foremost the production of food to sustain humanity. Providing intersections from field to laboratory studies and to modelling approaches, across multiple scales and for all continents, the Collection displays an overview of the state of nitrogen science in the early 21st century. Extending science to allow for policy-relevant messages renders the evidence provided a valuable basis for a global assessment of reactive nitrogen
Acceleration of global N₂O emissions seen from two decades of atmospheric inversion
Nitrous oxide (N2O) is the third most important long-lived GHG and an important stratospheric ozone depleting substance. Agricultural practices and the use of N-fertilizers have greatly enhanced emissions of N2O. Here, we present estimates of N2O emissions determined from three global atmospheric inversion frameworks during the period 1998–2016. We find that global N2O emissions increased substantially from 2009 and at a faster rate than estimated by the IPCC emission factor approach. The regions of East Asia and South America made the largest contributions to the global increase. From the inversion-based emissions, we estimate a global emission factor of 2.3 ± 0.6%, which is significantly larger than the IPCC Tier-1 default for combined direct and indirect emissions of 1.375%. The larger emission factor and accelerating emission increase found from the inversions suggest that N2O emission may have a nonlinear response at global and regional scales with high levels of N-input
A global FAOSTAT reference database of cropland nutrient budgets and nutrient use efficiency (1961–2020): nitrogen, phosphorus and potassium
Nutrient budgets help to identify the excess or insufficient use of fertilizers and other nutrient sources in agriculture. They allow for the calculation of indicators, such as the nutrient balance (surplus if positive or deficit if negative) and nutrient use efficiency, that help to monitor agricultural productivity and sustainability across the world. We present a global database of country-level budget estimates for nitrogen (N), phosphorus (P) and potassium (K) on cropland. The database, disseminated in FAOSTAT, is meant to provide a global reference, synthesizing and continuously updating the state of the art on this topic. The database covers 205 countries and territories, as well as regional and global aggregates, for the period from 1961 to 2020. Results highlight the wide range in nutrient use and nutrient use efficiencies across geographic regions, nutrients, and time. The average N balance on global cropland has remained fairly steady at about 50–55 kg ha−1 yr−1 during the past 15 years, despite increasing N inputs. Regional trends, however, show recent average N surpluses that range from a low of about 10 kg N ha−1 yr−1 in Africa to more than 90 kg N ha−1 yr−1 in Asia. Encouragingly, average global cropland N use efficiency decreased from about 59 % in 1961 to a low of 43 % in 1988, but it has risen since then to a level of 55 %. Phosphorus deficits are mainly found in Africa, whereas potassium deficits occur in Africa and the Americas. This study introduces improvements over previous work in relation to the key nutrient coefficients affecting nutrient budgets and nutrient use efficiency estimates, especially with respect to nutrient removal in crop products, manure nutrient content, atmospheric deposition and crop biological N fixation rates. We conclude by discussing future research directions and highlighting the need to align statistical definitions across research groups as well as to further refine plant and livestock coefficients and expand estimates to all agricultural land, including nutrient flows in meadows and pastures. Further information is available from https://doi.org/10.5061/dryad.hx3ffbgkh (Ludemann et al., 2023b) as well as the FAOSTAT database (https://www.fao.org/faostat/en/#data/ESB; FAO, 2022a) and is updated annually.</p
Leakage of nitrous oxide emissions within the Spanish agro-food system in 1961-2009
Abstract In this paper we examine the trends of nitrous oxide (N2O) emissions of the Spanish agricultural sector related to national production and consumption in the 1961?2009 period.The comparison between production- and consumption-based emissions at the national level provides a complete overview of the actual impact resulting from the dietary choices of a given country and allows the evaluation of potential emission leakages. On average, 1.5 % of the new reactive nitrogen that enters Spain every year is emitted as N2O. Production- and consumption-based emissions have both significantly increased in the period studied and nowadays consumption-based emissions are 45 % higher than production-based emissions. A large proportion of the net N2O emissions associated with imported agricultural godos comes from countries that are not committers for the United Nations Framework Convention on Climate Change Kyoto Protocol Annex I. An increase in feed consumption is the main driver of the changes observed, leading to a arkable emission leakage in the Spanish agricultural sector. The complementary approach used here is essential to achieve an effective mitigation of Spanish greenhouse gas emissions
ECLIM-SEHOP, a new platform to set up and develop international academic clinical trials for childhood cancer and blood disorders in Spain
Introduction: Cancer and blood disorders in children are rare. The progressive improvement in survival over the last decades largely relies on the development of international academic clinical trials that gather the sufcient number of patients globally to elaborate solid conclusions and drive changes in clinical practice. The participation of Spain into large international academic trials has traditionally lagged behind of other European countries, mainly due to the burden of administrative tasks to open new studies, lack of fnancial support and limited research infrastructure in our hospitals. Methods: The objective of ECLIM-SEHOP platform (Ensayos Clínicos Internacionales Multicéntricos-SEHOP) is to overcome these difculties and position Spain among the European countries leading the advances in cancer and blood disorders, facilitate the access of our patients to novel diagnostic and therapeutic approaches and, most importantly, continue to improve survival and reducing long-term sequelae. ECLIM-SEHOP provides to the Spanish clinical investigators with the necessary infrastructural support to open and implement academic clinical trials and registries. Results: In less than 3 years from its inception, the platform has provided support to 20 clinical trials and 8 observational studies, including 8 trials and 4 observational studies where the platform performs all trial-related tasks (integral support: trial setup, monitoring, etc.) with more than 150 patients recruited since 2017 to these studies. In this manuscript, we provide baseline metrics for academic clinical trial performance that permit future comparisons. Conclusions: ECLIM-SEHOP facilitates Spanish children and adolescents diagnosed with cancer and blood disorders to access state-of-the-art diagnostic and therapeutic strategies
Nitrogen deposition in Spain : modeled patterns and threatened habitats within the Natura 2000 network
The Mediterranean Basin presents an extraordinary biological richness but very little information is available on the threat that air pollution, and in particular reactive nitrogen (N), can pose to biodiversity and ecosystem functioning. This study represents the first approach to assess the risk of N enrichment effects on Spanish ecosystems. The suitability of EMEP and CHIMERE air quality model systems as tools to identify those areas where effects of atmospheric N deposition could be occurring was tested. For this analysis, wet deposition of NO₃− and NH₄+ estimated with EMEP and CHIMERE model systems were compared with measured data for the period 2005-2008 obtained from different monitoring networks in Spain. Wet N deposition was acceptably predicted by both models, showing better results for oxidized than for reduced nitrogen, particularly when using CHIMERE. Both models estimated higher wet deposition values in northern and northeastern Spain, and decreasing along a NE-SW axis. Total (wet + dry) nitrogen deposition in 2008 reached maxima values of 19.4 and 23.0 kg N ha¯¹ year¯¹ using EMEP and CHIMERE models respectively. Total N deposition was used to estimate the exceedance of N empirical critical loads in the Natura 2000 network. Grassland habitats proved to be the most threatened group, particularly in the northern alpine area, pointing out that biodiversity conservation in these protected areas could be endangered by N deposition. Other valuable mountain ecosystems can be also threatened, indicating the need to extend atmospheric deposition monitoring networks to higher altitudes in Spain
Genetic and Epigenetic Alterations of the NF2 Gene in Sporadic Vestibular Schwannomas
BACKGROUND: Mutations in the neurofibromatosis type 2 (NF2) tumor-suppressor gene have been identified in not only NF2-related tumors but also sporadic vestibular schwannomas (VS). This study investigated the genetic and epigenetic alterations in tumors and blood from 30 Korean patients with sporadic VS and correlated these alterations with tumor behavior. METHODOLOGY/PRINCIPAL FINDINGS: NF2 gene mutations were detected using PCR and direct DNA sequencing and three highly polymorphic microsatellite DNA markers were used to assess the loss of heterozygosity (LOH) from chromosome 22. Aberrant hypermethylation of the CpG island of the NF2 gene was also analyzed. The tumor size, the clinical growth index, and the proliferative activity assessed using the Ki-67 labeling index were evaluated. We found 18 mutations in 16 cases of 30 schwannomas (53%). The mutations included eight frameshift mutations, seven nonsense mutations, one in-frame deletion, one splicing donor site, and one missense mutation. Nine patients (30%) showed allelic loss. No patient had aberrant hypermethylation of the NF2 gene and correlation between NF2 genetic alterations and tumor behavior was not observed in this study. CONCLUSIONS/SIGNIFICANCE: The molecular genetic changes in sporadic VS identified here included mutations and allelic loss, but no aberrant hypermethylation of the NF2 gene was detected. In addition, no clear genotype/phenotype correlation was identified. Therefore, it is likely that other factors contribute to tumor formation and growth
Recommended from our members
The greenhouse gas impacts of converting food production in England and Wales to organic methods
Agriculture is a major contributor to global greenhouse gas (GHG) emissions and must feature in efforts to reduce emissions. Organic farming might contribute to this through decreased use of farm inputs and increased soil carbon sequestration, but it might also exacerbate emissions through greater food production elsewhere to make up for lower organic yields. To date there has been no rigorous assessment of this potential at national scales. Here we assess the consequences for net GHG emissions of a 100% shift to organic food production in England and Wales using life-cycle assessment. We predict major shortfalls in production of most agricultural products against a conventional baseline. Direct GHG emissions are reduced with organic farming, but when increased overseas land use to compensate for shortfalls in domestic supply are factored in, net emissions are greater. Enhanced soil carbon sequestration could offset only a small part of the higher overseas emissions
- …