81 research outputs found

    Sex differences in variability across timescales in BALB/c mice.

    Get PDF
    BackgroundFemales are markedly underinvestigated in the biological and behavioral sciences due to the presumption that cyclic hormonal changes across the ovulatory cycle introduce excess variability to measures of interest in comparison to males. However, recent analyses indicate that male and female mice and rats exhibit comparable variability across numerous physiological and behavioral measures, even when the stage of the estrous cycle is not considered. Hormonal changes across the ovulatory cycle likely contribute cyclic, intra-individual variability in females, but the source(s) of male variability has, to our knowledge, not been investigated. It is unclear whether male variability, like that of females, is temporally structured and, therefore, quantifiable and predictable. Finally, whether males and females exhibit variability on similar time scales has not been explored.MethodsThese questions were addressed by collecting chronic, high temporal resolution locomotor activity (LA) and core body temperature (CBT) data from male and female BALB/c mice.ResultsContrary to expectation, males are more variable than females over the course of the day (diel variability) and exhibit higher intra-individual daily range than females in both LA and CBT. Between mice of a given sex, variability is comparable for LA but the inter-individual daily range in CBT is greater for males. To identify potential rhythmic processes contributing to these sex differences, we employed wavelet transformations across a range of periodicities (1-39 h).ConclusionsAlthough variability in circadian power is comparable between the sexes for both LA and CBT, infradian variability is greater in females and ultradian variability is greater in males. Thus, exclusion of female mice from studies because of estrous cycle variability may increase variance in investigations where only male measures are collected over a span of several hours and limit generalization of findings from males to females

    Artifact Rejection Methodology Enables Continuous, Noninvasive Measurement of Gastric Myoelectric Activity in Ambulatory Subjects.

    Get PDF
    The increasing prevalence of functional and motility gastrointestinal (GI) disorders is at odds with bottlenecks in their diagnosis, treatment, and follow-up. Lack of noninvasive approaches means that only specialized centers can perform objective assessment procedures. Abnormal GI muscular activity, which is coordinated by electrical slow-waves, may play a key role in symptoms. As such, the electrogastrogram (EGG), a noninvasive means to continuously monitor gastric electrical activity, can be used to inform diagnoses over broader populations. However, it is seldom used due to technical issues: inconsistent results from single-channel measurements and signal artifacts that make interpretation difficult and limit prolonged monitoring. Here, we overcome these limitations with a wearable multi-channel system and artifact removal signal processing methods. Our approach yields an increase of 0.56 in the mean correlation coefficient between EGG and the clinical "gold standard", gastric manometry, across 11 subjects (p < 0.001). We also demonstrate this system's usage for ambulatory monitoring, which reveals myoelectric dynamics in response to meals akin to gastric emptying patterns and circadian-related oscillations. Our approach is noninvasive, easy to administer, and has promise to widen the scope of populations with GI disorders for which clinicians can screen patients, diagnose disorders, and refine treatments objectively

    A time to remember: The role of circadian clocks in learning and memory

    Get PDF
    The circadian system has pronounced influence on learning and memory, manifesting as marked changes in memory acquisition and recall across the day. From a mechanistic perspective, the majority of studies have investigated mammalian hippocampal-dependent learning and memory, as this system is highly tractable. The hippocampus plays a major role in learning and memory, and has the potential to integrate circadian information in many ways, including information from local, independent oscillators, and through circadian modulation of neurogenesis, synaptic remodeling, intracellular cascades, and epigenetic regulation of gene expression. These local processes are combined with input from other oscillatory systems to synergistically augment hippocampal rhythmic function. This overview presents an account of the current state of knowledge on circadian interactions with learning and memory circuitry and provides a framework for those interested in further exploring these interactions

    Maternal stress during pregnancy alters fetal cortico-cerebellar connectivity in utero and increases child sleep problems after birth

    Get PDF
    Child sleep disorders are increasingly prevalent and understanding early predictors of sleep problems, starting in utero, may meaningfully guide future prevention efforts. Here, we investigated whether prenatal exposure to maternal psychological stress is associated with increased sleep problems in toddlers. We also examined whether fetal brain connectivity has direct or indirect influence on this putative association. Pregnant women underwent fetal resting-state functional connectivity MRI and completed questionnaires on stress, worry, and negative affect. At 3-year follow-up, 64 mothers reported on child sleep problems, and in the subset that have reached 5-year follow-up, actigraphy data (N = 25) has also been obtained. We observe that higher maternal prenatal stress is associated with increased toddler sleep concerns, with actigraphy sleep metrics, and with decreased fetal cerebellar-insular connectivity. Specific mediating effects were not identified for the fetal brain regions examined. The search for underlying mechanisms of the link between maternal prenatal stress and child sleep problems should be continued and extended to other brain areas

    cGMP-Dependent Protein Kinase Type I Is Implicated in the Regulation of the Timing and Quality of Sleep and Wakefulness

    Get PDF
    Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3′,5′-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1–4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep

    Circadian Behaviour in Neuroglobin Deficient Mice

    Get PDF
    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night

    Experimental ‘Jet Lag’ Inhibits Adult Neurogenesis and Produces Long-Term Cognitive Deficits in Female Hamsters

    Get PDF
    Background: Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined. Methodology/Principal Findings: In the present study, we investigated whether experimental ‘jet lag ’ (i.e., phase advances of the light:dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function. Conclusions/Significance: Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learnin

    Sleep disturbances in highly stress reactive mice: Modeling endophenotypes of major depression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuronal mechanisms underlying affective disorders such as major depression (MD) are still poorly understood. By selectively breeding mice for high (HR), intermediate (IR), or low (LR) reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis, we recently established a new genetic animal model of extremes in stress reactivity (SR). Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS) and non-REM sleep (NREMS) as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG) parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG) electrodes. After recovery, EEG and EMG recordings were performed for two days.</p> <p>Results</p> <p>Differences in the amount of REMS and wakefulness and in the number of transitions between vigilance states were found in HR mice, when compared with IR and LR animals. Increased frequencies of transitions from NREMS to REMS and from REMS to wakefulness in HR animals were robust across the light-dark cycle. Detailed statistical analyses of spectral EEG parameters showed that especially during NREMS the power of the theta (6-9 Hz), alpha (10-15 Hz) and eta (16-22.75 Hz) bands was significantly different between the three breeding lines. Well defined distributions of significant power differences could be assigned to different times during the light and the dark phase. Especially during NREMS, group differences were robust and could be continuously monitored across the light-dark cycle.</p> <p>Conclusions</p> <p>The HR mice, i.e. those animals that have a genetic predisposition to hyper-activating their HPA axis in response to stressors, showed disturbed patterns in sleep architecture, similar to what is known from depressed patients. Significant alterations in several frequency bands of the EEG, which also seem to at least partly mimic clinical observations, suggest the SR mouse lines as a promising animal model for basic research of mechanisms underlying sleep impairments in MD.</p

    Neuropeptide Signaling Differentially Affects Phase Maintenance and Rhythm Generation in SCN and Extra-SCN Circadian Oscillators

    Get PDF
    Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC2, play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC2 receptors (Vipr2−/−) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. Within the brain, the SCN is not the only site containing endogenous circadian oscillators, nor is it the only site of VPAC2 receptor expression; both VPAC2 receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. The functional role of VPAC2 receptors in rhythm generation and maintenance in these tissues is, however, unknown. We used wild type (WT) and Vipr2−/− mice expressing a luciferase reporter (PER2::LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC2 receptor. Vipr2−/− SCN cultures expressed significantly lower amplitude PER2::LUC oscillations than WT SCN. Surprisingly, in Vipr2−/− Arc/ME/PT complex (Arc, median eminence and pars tuberalis), DMH and pituitary, the period, amplitude and rate of damping of rhythms were not significantly different to WT. Intriguingly, while we found WT SCN and Arc/ME/PT tissues to maintain a consistent circadian phase when cultured, the phase of corresponding Vipr2−/− cultures was reset by cull/culture procedure. These data demonstrate that while the main rhythm parameters of extra-SCN circadian oscillations are maintained in Vipr2−/− mice, the ability of these oscillators to resist phase shifts is compromised. These deficiencies may contribute towards the aberrant behavior and metabolism associated with Vipr2−/− animals. Further, our data indicate a link between circadian rhythm strength and the ability of tissues to resist circadian phase resetting
    corecore