903 research outputs found
Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads
to tolerable heat and particle loads on the wall is a major challenge. The new European
medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade
(AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide
parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal
and SOL parameters are not achievable simultaneously in present day devices. A two prong
approach is adopted. On the one hand, scenarios with tolerable transient heat and particle
loads, including active edge localised mode (ELM) control are developed. On the other hand,
divertor solutions including advanced magnetic configurations are studied. Considerable
progress has been made on both approaches, in particular in the fields of: ELM control with
resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control,
as well as filamentary scrape-off-layer transport. For example full ELM suppression has now
been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement
HH(98,y2) 0.95. Advances have been made with respect to detachment onset and control.
Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor)
shed new light on SOL physics. Cross field filamentary transport has been characterised in a
wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental
understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the
SOL also play a crucial role for ELM stability and access to small ELM regimes.European Commission (EUROfusion 633053
ELM-induced cold pulse propagation in ASDEX Upgrade
In ASDEX Upgrade, the propagation of cold pulses induced by type-I edge localized modes (ELMs) is studied using electron cyclotron emission measurements, in a dataset of plasmas with moderate triangularity. It is found that the edge safety factor or the plasma current are the main determining parameters for the inward penetration of the T-e perturbations. With increasing plasma current the ELM penetration is more shallow in spite of the stronger ELMs. Estimates of the heat pulse diffusivity show that the corresponding transport is too large to be representative of the inter-ELM phase. Ergodization of the plasma edge during ELMs is a possible explanation for the observed properties of the cold pulse propagation, which is qualitatively consistent with non-linear magneto-hydro-dynamic simulations.Peer reviewe
Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring
International audienceBoundary layer concentrations of several volatile organic compounds (VOC) were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in HyytiÀlÀ, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 ?g m?2 h?1, ?-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene
Ambient sesquiterpene concentration and its link to air ion measurements
International audienceAmbient air ion size distributions have been measured continuously at the Finnish boreal forest site in HyytiÀlÀ since spring 2003. In general, these measurements show a maximum of air ions below 1.0 nm in diameter. But this physical characterization does not provide any information about the ion's chemical composition, which is one key question regarding the explanation of nucleation events observed. In this study we propose a link of the observed maximum of negative air ions between 0.56 and 0.75 nm to the so-called stabilised Criegee biradical, formed in the reaction of biogenic sesquiterpenes with ozone and predominantly destroyed by its reaction with ambient water vapour. Calculations of the electron and proton affinities of 120 kJ mol?1 (1.24 eV) and of 960 kJ mol?1 support this link. Other possible candidates such as sulphuric acid derived clusters are unable to explain the observations made. By using this approach, we are able to calculate the ambient concentration of sesquiterpenes at the air ion instrument inlet with a high time resolution on the daily and seasonal scale. The estimated concentration is found to reveal the same seasonal pattern as emission measurements conducted at shoot level. As expected for biogenic VOCs, the concentration is obtained highest during summer (maximum values of about 100 pptv) and smallest during winter (minimum less than 1 pptv). Because of the sesquiterpenes high reactivity and its low ambient concentrations, this approach can be a first step in understanding their emission and their impact on atmospheric chemistry in more detail. The findings presented are highly relevant for emission budgets too, since boreal forests are extended over large areas of the globe
Helium plasma operations on ASDEX Upgrade and JET in support of the non-nuclear phases of ITER
For its initial operational phase, ITER has until recently considered using non-nuclear hydrogen (H) or helium (He) plasmas to keep nuclear activation at low levels. To this end, the Tokamak Exploitation Task Force of the EUROfusion Consortium carried out dedicated experimental campaigns in He on the ASDEX Upgrade (AUG) and JET tokamaks in 2022, with particular emphasis put on the ELMy H-mode operation and plasma-wall interaction processes as well as comparison to H or deuterium (D) plasmas. Both in pure He and mixed He + H plasmas, H-mode operation could be reached but more effort was needed to obtain a stable plasma scenario than in H or D. Even if the power threshold for the LH transition was lower in He, entering the type-I ELMy regime appeared to require equally much or even more heating power than in H. Suppression of ELMs by resonant magnetic perturbations was studied on AUG but was only possible in plasmas with a He content below 19%; the reason for this unexpected behaviour remains still unclear and various theoretical approaches are being pursued to properly understand the physics behind ELM suppression. The erosion rates of tungsten (W) plasma-facing components were an order of magnitude larger than what has been reported in hydrogenic plasmas, which can be attributed to the prominent role of He2+ ions in the plasma. For the first time, the formation of nanoscale structures (W fuzz) was unambiguously demonstrated in H-mode He plasmas on AUG. However, no direct evidence of fuzz creation on JET was obtained despite the main conditions for its occurrence being met. The reason could be a delicate balance between W erosion by ELMs, competition between the growth and annealing of the fuzz, and coverage of the surface with co-deposits.</p
Anode ink formulation for a fully printed flexible fuel cell stack
In fuel cells the underlying reactions take place at the catalyst layers composed of materials favoring the desired electrochemical reactions. This paper introduces a formulation process for a catalyst inkjet ink used as an anode for a fully printed flexible fuel cell stack. The optimal ink formulation was 2.5 wt% of carbonâplatinumâruthenium mixture with 0.5% Nafion concentration in a diacetone alcohol solvent vehicle. The best jetting performance was achieved when 1 wt% binder was included in the ink formulation. Anodes with resistivity of approximately 0.1 Ω cm were inkjet printed, which is close to the commercial anode resistivity of 0.05 Ω cm. The anodes were used in fuel cell stacks that were prepared by utilizing only printing methods. The best five-cell-air-breathing stack showed an open circuit potential under H2/air conditions of 3.4 V. The peak power of this stack was 120 ”W cmâ2 at 1.75 V, with a resistance obtained from potentiostatic impedance analysis of 295 Ohm cm2. The printed electrodes showed a performance suitable for low-performance solutions, such as powering single-use sensors
Real-time plasma state monitoring and supervisory control on TCV
In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state arc modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECI I) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.Peer reviewe
Aerosol Chemistry Resolved by Mass Spectrometry: Linking Field Measurements of Cloud Condensation Nuclei Activity to Organic Aerosol Composition
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Environmental Science & Technology, copyright © American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.est.6b01675Aerosol hygroscopic properties were linked to its chemical composition by using complementary online mass spectrometric techniques in a comprehensive chemical characterization study at a rural mountaintop station in central Germany in August 2012. In particular, atmospheric pressure chemical ionization mass spectrometry ((â)APCI-MS) provided measurements of organic acids, organosulfates, and nitrooxy-organosulfates in the particle phase at 1 min time resolution. Offline analysis of filter samples enabled us to determine the molecular composition of signals appearing in the online (â)APCI-MS spectra. Aerosol mass spectrometry (AMS) provided quantitative measurements of total submicrometer organics, nitrate, sulfate, and ammonium. Inorganic sulfate measurements were achieved by semionline ion chromatography and were compared to the AMS total sulfate mass. We found that up to 40% of the total sulfate mass fraction can be covalently bonded to organic molecules. This finding is supported by both on- and offline soft ionization techniques, which confirmed the presence of several organosulfates and nitrooxy-organosulfates in the particle phase. The chemical composition analysis was compared to hygroscopicity measurements derived from a cloud condensation nuclei counter. We observed that the hygroscopicity parameter (Îș) that is derived from organic mass fractions determined by AMS measurements may overestimate the observed Îș up to 0.2 if a high fraction of sulfate is bonded to organic molecules and little photochemical aging is exhibited
Plume Characterization of a Typical South African Braai
To braai is part of the South African heritage that transcends ethnic barriers and socio-economic groups. In this paper, a comprehensive analysis of atmospheric gaseous and aerosol species within a plume originating from a typical South African braai is presented. Braai experiments were conducted at Welgegund â a comprehensively equipped regional background atmospheric air quality and climate change monitoring station. Five distinct phases were identified during the braai. Sulphur dioxide (SO2), nitrogen oxides(NOx) and carbonmonoxide (CO) increased significantly, while ozone (O3) did not increase notably. Aromatic and alkane volatile organic compounds were determined, with benzene exceeding the 2015 South African one-year ambient air quality limit. A comparison of atmospheric PM10 (particulate matter of an aerodynamic diameter â€10 ÎŒm) concentrations with the 24-hour ambient limit indicated that PM10 is problematic during the meat grilling phase. From a climatic point of view, relatively high single scattering albedo (Ïo) indicated a cooling aerosol direct effect, while periods with lowerÏo coincided with peak black carbon (BC) emissions. The highest trace metal concentrations were associated with species typically present in ash. The lead (Pb) concentration was higher than the annual ambient air quality limit. Sulphate (SO4 2â), calcium (Ca2+) and magnesium (Mg2+) were the dominant water-soluble species present in the aerosols. The largest number of organic aerosol compounds was in the PM 2.5â1 fraction, which also had the highest semi-quantified concentration. The results indicated that a recreational braai does not pose significant health risks. However, the longer exposure periods that are experienced by occupational vendors, will significantly increase health risks.KEYWORDS Braai (barbeque), atmospheric gaseous species, aerosols, atmospheric organic compounds, optical properties, chemical properties
- âŠ