1,249 research outputs found

    The FERRUM project: Experimental lifetimes and transition probabilities from highly excited even 4d levels in Fe ii

    Full text link
    We report lifetime measurements of the 6 levels in the 3d6(5D)4d e6G term in Fe ii at an energy of 10.4 eV, and f -values for 14 transitions from the investigated levels. The lifetimes were measured using time-resolved laser-induced fluorescence on ions in a laser-produced plasma. The high excitation energy, and the fact that the levels have the same parity as the the low-lying states directly populated in the plasma, necessitated the use of a two-photon excitation scheme. The probability for this process is greatly enhanced by the presence of the 3d6(5D)4p z6F levels at roughly half the energy difference. The f -values are obtained by combining the experimental lifetimes with branching fractions derived using relative intensities from a hollow cathode discharge lamp recorded with a Fourier transform spectrometer. The data is important for benchmarking atomic calculations of astrophysically important quantities and useful for spectroscopy of hot stars.Comment: A&A, accepte

    Ground States for Exponential Random Graphs

    Full text link
    We propose a perturbative method to estimate the normalization constant in exponential random graph models as the weighting parameters approach infinity. As an application, we give evidence of discontinuity in natural parametrization along the critical directions of the edge-triangle model.Comment: 12 pages, 3 figures, 1 tabl

    Homogenization of random degenerated nonlinear monotone operators

    Get PDF
    This paper deals with homogenization of random nonlinear monotone operators in divergence form. We assume that the structure conditions (strict monotonicity and continuity conditions) degenerate and are given in terms of a weight function. Under proper integrability assumptions on the weight function we construct the effective operator and prove the homogenization result

    Experimental and theoretical lifetimes and transition probabilities in Sb I

    Full text link
    We present experimental atomic lifetimes for 12 levels in Sb I, out of which seven are reported for the first time. The levels belong to the 5p2^2(3^3P)6s 2^{2}P, 4^{4}P and 5p2^2(3^3P)5d 4^{4}P, 4^{4}F and 2^{2}F terms. The lifetimes were measured using time-resolved laser-induced fluorescence. In addition, we report new calculations of transition probabilities in Sb I using a Multiconfigurational Dirac-Hartree-Fock method. The physical model being tested through comparisons between theoretical and experimental lifetimes for 5d and 6s levels. The lifetimes of the 5d 4^4F3/2,5/2,7/2_{3/2, 5/2, 7/2} levels (19.5, 7.8 and 54 ns, respectively) depend strongly on the JJ-value. This is explained by different degrees of level mixing for the different levels in the 4^4F term.Comment: 10 page

    Modeling driver control behavior in both routine and near-accident driving

    Get PDF
    Building on ideas from contemporary neuroscience, a framework is proposed in which drivers’ steering and pedal behavior is modeled as a series of individual control adjustments, triggered after accumulation of sensory evidence for the need of an adjustment, or evidence that a previous or ongoing adjustment is not achieving the intended results. Example simulations are provided. Specifically, it is shown that evidence accumulation can account for previously unexplained variance in looming detection thresholds and brake onset timing. It is argued that the proposed framework resolves a discrepancy in the current driver modeling literature, by explaining not only the short-latency, well-tuned, closed-loop type of control of routine driving, but also the degradation into long-latency, ill-tuned open-loop control in more rare, unexpected, and urgent situations such as near-accidents
    corecore