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Modeling driver control behavior in both routine and near-accident driving

Gustav Markkula

Volvo Group Trucks Technology, Advanced Technology and Research, Göteborg, Sweden

Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden

Building on ideas from contemporary neuroscience, a framework is proposed in which drivers’ steering and

pedal behavior is modeled as a series of individual control adjustments, triggered after accumulation of

sensory evidence for the need of an adjustment, or evidence that a previous or ongoing adjustment is not

achieving the intended results. Example simulations are provided. Specifically, it is shown that evidence

accumulation can account for previously unexplained variance in looming detection thresholds and brake

onset timing. It is argued that the proposed framework resolves a discrepancy in the current driver modeling

literature, by explaining not only the short-latency, well-tuned, closed-loop type of control of routine driving,

but also the degradation into long-latency, ill-tuned open-loop control in more rare, unexpected, and urgent

situations such as near-accidents.

INTRODUCTION

There is a wealth of existing models that describe the

steering and pedal behavior exhibited by drivers to con-

trol their vehicles (Plöchl & Edelmann, 2007; Markkula et

al., 2012). Such models can provide great advantages in

many simulation-based approaches to the study of traffic,

not the least concerning road safety (van Auken et al., 2011;

Markkula et al., 2012). However, as will be described here

in a brief literature review, driver models have so far taken

rather different forms when accounting for routine driving

behavior on the one hand, and near-accident behavior on

the other. To date, there have been no models that predict

the differing characteristics of control behavior in these two

contexts, based on a single set of underlying assumptions.

The aim of this paper is to present a framework which could

be capable of doing so, partially with the help of some re-

cent results from the neurobiological study of sensorimotor

behavior. The argument for the proposed assumptions will

be based on explanations of how the resulting framework is

capable of predicting typical properties of both routine and

near-accident behavior, complemented with reconsideration

of some existing results from the driver behavior literature.

REVIEW

Most models of routine driving (Plöchl & Edelmann,

2007) assume that drivers engage in closed-loop control,

continuously updating steering and pedals in response to the

traffic situation, limited only by a constant neuromuscular

delay of about 0.2 seconds. In contrast, typical models of

near-accident control (van Auken et al., 2011; Kusano &

Gabler, 2012) posit single open-loop braking or steering ma-

neuvers of a shape that many closed-loop models have a hard

time reproducing (Markkula et al., submitted), occurring af-

ter a long reaction time of about 1-2 seconds. Near-accident

maneuver amplitudes have been modeled as basically ran-

dom, with reports of both overreactions (Malaterre et al.,

1988) and under-utilization of vehicle capabilities (Adams,

1994), whereas in routine driving, control has been assumed

to be well-tuned to vehicle and situation dynamics, some-

times to the point of optimal control. Many routine driving

models posit the use of perceptual cues, such as the move-

ment of sight points for lateral control (Salvucci & Gray,

2004), or, for longitudinal control, the optical size θ and ex-

pansion θ̇ of a forward obstacle, the optically defined esti-

mate of time to collision τ = θ/θ̇ (Lee, 1976; Flach et al.,

2011) or its inverse 1/τ (Kiefer et al., 2003). When such

cues have been considered in near-accident control, it has

been to discuss detection thresholds, the minimal stimuli at

all discernible to a driver (Maddox & Kiefer, 2012). On the

other hand, if thresholds have been applied in modeling of

routine driving, it has mainly been to account for the satis-

ficing nature of non-critical control: To limit expended ef-

fort, drivers postpone control until conflict-describing cues

get large enough (Kiefer et al., 2003; Gordon & Magnuski,

2006; Flach et al., 2011), reaching levels orders of magnitude

above typical thresholds for detection.

Considering the above, one could posit two distinct

classes of behavior, mediated by different neural circuitry

altogether. However, there are clear difficulties to this ap-

proach: Isn’t there a continuum of traffic situations between

“routine” and “near-accident”? And from where does the,

albeit limited, near-accident ability of handling pedals and

steering wheel come, if not from routine driving experience?

NEW CONTRIBUTION

Driving control as a series of open-loop adjustments

The first key assumption of the proposed framework is

that, at a basic level, driving control is to a large extent
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Figure 1. Example steering and pedal use in routine and near-accident situations, all from heavy truck driving in real traffic.

constructed from individual, discrete control adjustments,

each of which is open-loop in the sense that the shape of

the adjustment over time is predetermined already at its on-

set. Fig. 1 provides examples, from a data set of natural-

istic driving, of human driving control in both routine and

near-accident maneuvering. The lower row of panels show

rates of change of pedal and steering wheel positions. These

rates stay close to zero throughout, except for intermittent

upward or downward pulses of activity (highlighted with ver-

tical gray lines), interpretable as the hypothesized individ-

ual control adjustments. Previously, it has been observed

that amplitude and maximum steering rate of severe evasive

maneuvers are linearly correlated (Breuer, 1998; Markkula

et al., submitted), suggesting a constant maneuver duration.

Recently, Benderius and Markkula (2014) have shown that

this correlation exists also for routine steering adjustments.

These were found to follow bell-shaped profiles of move-

ment speed, similar to what is consistently observed in labo-

ratory experiments on reaching (Franklin & Wolpert, 2011).

Short bell-shaped bursts of movement have been suggested

to serve as spinal-level building blocks that can be com-

bined and superpositioned to construct complex movement

(Giszter, 2009).

It is proposed, here, that driving control adjustments are

typically both small and frequent in occurrence, explaining

why routine driving can nevertheless be well characterized as

a continuous closed-loop activity. This would be especially

true in situations like curve-taking (see the third panel from

the left in Fig. 1, from about 20 s), where overall control is

large in duration and amplitude, compared to the individual

adjustments. However, in more urgent situations, where large

changes in pedal or steering command are needed quickly,

the underlying open-loop nature of control comes to the fore.

Additionally, when specific sequences of movement

bursts are used recurrently, these can be established as

higher-level movement primitives in their own right (Giszter,

2009). Such learning could be hypothesized for longer-

duration control maneuvers that are recurrently useful in traf-

fic, such as gradual changes in pedal position (visible for the

throttle at 5 and 15 s in the leftmost panel of Fig. 1), inter-

section turning, or lane changes, which human drivers can

perform blindfolded with some, but not complete, accuracy

(Cloete & Wallis, 2009).

Some previous models of driving have considered in-

termittent control, occurring either at satisficing thresholds

(Gordon & Magnuski, 2006) or as a result of bottlenecks

in information processing (Bi et al., 2012). Here, another

means of accounting for adjustment timing is adopted.

Timing distributions from noisy evidence accumulation

The second key assumption is that one needs to consider

distributions of control timing, not only in near-accident con-

trol, but also in routine driving, and that these distributions

are affected by, among other things, situation kinematics and

expectancy. Specifically, it is suggested here that (a) late tim-

ing of control in unexpected critical situations and (b) satis-

ficing timing of control in non-critical routine situations, are

governed by the same underlying mechanisms.

A strong candidate for such a mechanism is available from

accumulator models of action timing. These models, which

assume that action occurs after integration to threshold of

sensory evidence for an action’s suitability, have been shown

to account well for timing distributions in a large number

of laboratory tasks, and through microelectrode recordings

in behaving animals, likely neural correlates of this pro-

cess have been identified (Purcell et al., 2010). Recently,

Ratcliff and Strayer (2013) have successfully fitted this type

of model to distributions of reaction time to one important

fixed-intensity stimulus in traffic: brake lights.

In order to account for the satisficing patterns of behavior

in routine driving, one would need to consider also variable-

intensity stimuli, such as the perceptual cues used in many

driver models. As a first indication that driver response tim-

ing can be understood as accumulation of such perceptual

evidence, consider the experiment reported by Lamble et al.

(1999), on how detection thresholds for optical expansion

rate θ̇ vary with gaze eccentricity and initial lead vehicle



headway: Test subjects, instructed to decelerate as soon as

they detected a closing headway, consistently did so at lower

θ̇ values for longer initial headways. This is precisely what

would be predicted by an accumulator model where θ̇ is con-

sidered the stimulus intensity, since integration of a small

quantity over a long time is equivalent to integration of a

large quantity over a short time. To see this in more detail,

consider the following simple accumulator:

dA(t)

dt
=C ·P(t)−M+ ε(t) (1)

Where P(t) is a stimulus, C and M are model parameters, and

ε(t) is noise, and where detection occurs when A(t) ≥ A0.

This specific formulation is inspired by Purcell et al. (2010).

In line with their interpretation of A as a neuron firing rate,

this quantity is constrained to A(t)≥ 0.

The upper panels of Fig. 2 illustrate the behavior of this

model, with P(t) = θ̇(t), C = 1, and zero noise, parameter-

fitted (M = 0.000554 rad/s; A0 = 0.00143 rad) to reproduce

the detection thresholds reported by Lamble et al. (1999)

for zero gaze eccentricity. With a longer initial headway,

θ̇ grows more slowly, meaning that A will reach threshold

later in time, but at a lower final θ̇ value, just as observed in

the experiment. The lower panels of Fig. 2 hint at how the

same model could also account for the observed increasing

thresholds and variance with increasing gaze eccentricity, by

including a non-zero noise term ε(t), and making C a nonlin-

ear function of eccentricity (not pursued further here).

The experiment of Lamble et al. (1999) was not intended

to approximate satisficing driver behavior. For a step in

that direction, consider the results reported by Kiefer et

al. (2003). These authors instructed drivers to wait to the

last second deemed possible before applying “normal” or

“hard” braking, in response to a set of test track scenarios

with a lead vehicle mockup. This is also a rather artificial

task, but arguably at least the normal braking condition could

come somewhere close to routine, satisficing headway con-

trol. It is interesting to note, then, that the observed pat-

tern of inverse times to collision (TTC) at response, in the

normal-braking scenarios with lead vehicle deceleration, can

be well explained (R2 = 0.91) by an accumulator model with

P(t) = θ̇(t)/θ(t) = 1/τ(t); see Fig. 3 (M = 0.00155 s−1;

A0 = 0.0888). For the scenarios without deceleration, on the

other hand, the same model predicts a much earlier response

than what was observed. This could mean that there is some

fundamental flaw to the accumulator approach, but it could

also be that the drivers were using some other perceptual cue

than just 1/τ, or that the “last-second normal braking” task

was further from routine driving behavior in the scenarios

without deceleration.

In any case, in real traffic, driver behavior is not based

solely on responding to graded perceptual quantities such as

1/τ. Fig. 4 provides an illustration of how Eq. (1) can be un-

derstood in this broader context. For example, braking may
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Figure 2. The 20 m and 40 m headway scenarios of Lamble

et al. (1999). Top left: Growth of θ̇ over time. Top right: Ac-

cumulator model fitted to detection thresholds observed for

zero gaze eccentricity, and illustration of model with noise

(light blue trajectories and detection distribution). Bottom

left: Detection thresholds (mean and standard deviation) as

a function of gaze eccentricity, as observed by Lamble et al.

Bottom right: Prediction from model with noise, at values of

C selected to roughly match the data in the left panel.
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Figure 3. Accumulator model fit of “normal” last-second

braking onset data from Kiefer et al. (2003), for decelerating

and stationary lead vehicle scenarios (own speed in mph/lead

vehicle speed in mph/lead vehicle deceleration in g).

be triggered without optical expansion, based on other evi-

dence for its need, such as a brake light onset, or a red traffic

light ahead of the lead vehicle. Conversely, braking may not

occur despite optical expansion due to counter-evidence such

as the traffic light shifting to green, or the lead vehicle’s turn

indicator activating.

With Fig. 4 in mind, the perceptual quantity P(t) in Eq. (1)

can be interpreted as being one piece of evidence for a possi-

ble need of control adjustment, and the −M term as being the

sum of a negative gating (corresponding to a minimum level

of input activation for accumulation to begin; again inspired
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Figure 4. Schematic illustration of the proposed accumulator

account of control adjustment timing.

by Purcell et al., 2010) together with all the other available

evidence for and against the control adjustment. If so, the pa-

rameter M should vary with expectancy: In situations where

the driver would normally not at all expect a need for a con-

trol adjustment, M will be larger, dA/dt will be smaller, the

driver will be correspondingly desensitized to the perceptual

quantity P, and the time to response will be prolonged.

Magnitude of adjustments tuned to sensory inputs

Another important assumption, which may not be surpris-

ing given what has been said so far, is that the magnitude of

each control adjustment is affected by the situation at hand.

Specifically, it is suggested here that in routine, steady state

driving, each control adjustment aims to resolve the situation

that triggered it. A steering adjustment caused by a moving

far point aims to immobilize the far point, a brake application

caused by a looming lead vehicle aims to stop the looming.

For often-encountered driving situations, drivers will have

had ample time to learn suitable mappings from sensory in-

put to control adjustment, acquiring a near-optimal trade-off

between effort and performance, and what can be interpreted

as a thorough understanding of their vehicle’s dynamics. See

(Markkula, 2013) for a sketch of how the far point control

law suggested by Salvucci and Gray (2004) could be un-

derstood in this way. However, in more critical situations,

typically previously unexperienced by the driver, the same

mappings may no longer be as well-tuned to the situation or

to the vehicle (Markkula et al., submitted), and this could

explain reports of driver overreactions or underreactions in

near-accident maneuvering. Furthermore, a possibly relevant

neurobiological phenomenon in this context is motor noise,

inherent variability in motor output which typically scales

with movement amplitude (Franklin & Wolpert, 2011), such

that large pedal or steering movements will be more likely to

turn out far from what was intended by the driver.

Forward-model prediction of sensory input

An important follow-up question to what has been said so

far is: When a control-adjusting burst of activity has been

generated, how long time must pass before the next one can

occur? To begin with, the previously cited work on motor

primitives (Giszter, 2009) as well as Fig. 1 suggest that one

does not have to await the completion of the first burst; con-

trol adjustments can be additively superpositioned. But if

each control adjustment aims to completely resolve the situ-

ation that triggered it, such as suggested above, then super-

position should not be needed. Rather, it would seem inap-

propriate to generate any further control until the vehicle has

fully responded, with its inherent delays, to the first adjust-

ment.

One possibility here is that the accumulator is simply re-

set to zero or some intermediate value after reaching thresh-

old, and that during the time after the first control adjust-

ment, when the original situation is still not fully resolved,

the delays of the accumulation process in itself is enough to

withhold further control response. A more elegant solution,

with neurobiological support, would be that when the mo-

tor command for the first control adjustment is generated, an

efference copy of this command is sent to parts of the brain

(especially the cerebellum), which are capable of generating

forward model predictions of the effect of the motor action

on future sensory input (Franklin & Wolpert, 2011). It is thus

proposed here that after each control adjustment, a prediction

Pp(t) is formed of how P(t) will respond, e.g. by gradually

falling to zero. Pp(t) is then included as an inhibitory input

to the accumulator, such that what is driving the accumulator

is actually not P(t), but P(t)−Pp(t).
Fig. 5 illustrates the behavior of the brake reaction model

fitted to the Kiefer et al. (2003) data (Fig. 3), complemented

with (a) a linear mapping from 1/τ at brake adjustment on-

set to adjustment amplitude, well-tuned for moderate levels

of lead vehicle braking, and (b) a simple forward model of

how 1/τ will respond to such adjustments. Full details of

these simulations are beyond the scope here; they are shown

merely as a qualitative illustration of the proposed framework

principles. Specifically, it can be noted how an unusually

high lead vehicle deceleration causes an initial underreaction,

followed by increases in pedal position later on.

DISCUSSION

Many testable predictions can be made based on the

framework proposed here. For example, in both routine and

near-accident situations, control timing should be affected by

the dynamics of both traffic situation and evidence accumu-

lation, such as preliminarily suggested here for the Kiefer

et al. (2003) data set. To test this prediction in more detail,

controlled experiments are needed, where situation dynamics

are varied while keeping constant any other evidence to the

driver for or against the need of control adjustments.

If the suggested framework principles can be corrobo-

rated, they can be used for developing improved simula-

tion models of driver behavior. Near-accident models can

be extended with situation-dependent distributions for both

response time and maneuver amplitudes. Routine driving
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models can be extended to better account for control, most

immediately in situations where longer-duration learned ma-

neuvers should be rare, such as keeping in a lane with low

curvature, or car-following at roughly constant speed.

It should be noted that several factors important for driv-

ing control have been left out of the scope here, such

as arousal, cognitive control, and sensorimotor learning

(Engström et al., 2013). However, the proposed framework

seems highly amenable to extensions in these directions,

probably more so than alternative frameworks based on for

example control theory.
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