173 research outputs found

    Affect in mathematics education

    Get PDF
    There are two different uses for the word “affect” in behavioral sciences. Often it is used as an overarching umbrella concept that covers attitudes, beliefs, motivation, emotions, and all other noncognitive aspects of human mind. In this article, however, the word affect is used in a more narrow sense, referring to emotional states and traits. A more technical definition of emotions, states, and traits will follow later.Peer reviewe

    Mathematical talent in Braille code pattern finding and invention

    Get PDF
    The recognition of patterns and creativity are two characteristics associated with mathematical talent. In this study, we analyzed these characteristics in a group of 37 mathematically talented students. The students were asked to find the pattern the Braille code had been built upon and reinvent it with the aim of making its mathematical language become more functional. Initially, the students were unable to identify the formation pattern of Braille, but after experiencing the difficulties that blind people face when reading it, they recognized the generating element and the regularity. The results were in contrast with those of a control group, and it is noted that the students with mathematical talent were more effective in using visualization to identify the regularity of the pattern and their invention proposals were more sophisticated and used less conventional mathematical content.This research is part of the R+D+I project EDU2015- 69,731-R (Spanish Government/MinEco and ERDF)

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Interactions between deformation and fluids in the frontal thrust region of the NanTroSEIZE transect offshore the Kii Peninsula, Japan: Results from IODP Expedition 316 Sites C0006 and C0007

    Get PDF
    Integrated Ocean Drilling Program (IODP) Expedition 316 Sites C0006 and C0007 examined the deformation front of the Nankai accretionary prism offshore the Kii Peninsula, Japan. In the drilling area, the frontal thrust shows unusual behavior as compared to other regions of the Nankai Trough. Drilling results, integrated with observations from seismic reflection profiles, suggest that the frontal thrust has been active since similar to 0.78-0.436 Ma and accommodated similar to 13 to 34% of the estimated plate convergence during that time. The remainder has likely been distributed among out-of-sequence thrusts further landward and/or accommodated through diffuse shortening. Unlike results of previous drilling on the Nankai margin, porosity data provide no indication of undercompaction beneath thrust faults. Furthermore, pore water geochemistry data lack clear indicators of fluid flow from depth. These differences may be related to coarser material with higher permeability or more complex patterns of faulting that could potentially provide more avenues for fluid escape. In turn, fluid pressures may affect deformation. Well-drained, sand-rich material under the frontal thrust could have increased fault strength and helped to maintain a large taper angle near the toe. Recent resumption of normal frontal imbrication is inferred from seismic reflection data. Associated decollement propagation into weaker sediments at depth may help explain evidence for recent slope failures within the frontal thrust region. This evidence consists of seafloor bathymetry, normal faults documented in cores, and low porosities in near surface sediments that suggest removal of overlying material. Overall, results provide insight into the complex interactions between incoming materials, deformation, and fluids in the frontal thrust region

    Physiotherapists' experiences of physiotherapy interventions in scientific physiotherapy publications focusing on interventions for children with cerebral palsy: a qualitative phenomenographic approach

    Get PDF
    Background: Physiotherapy research concerning interventions for children with CP is often focused on collecting evidence of the superiority of particular therapeutic methods or treatment modalities. Articulating and documenting the use of theory, instrumentation and research design and the assumptions underlying physiotherapy research interventions are important. Physiotherapy interventions focusing on children with Cerebral Palsy should, according to the literature, be based on a functional and environmental perspective with task-specific functional activity, motor learning processes and Family-Centred Service i.e. to enhance motor ability and improve capacity so that the child can perform the tasks necessary to participate actively in everyday life. Thus, it is important to coordinate the norms and values of the physiotherapist with those of the family and child. The aim of this study was to describe how physiotherapists' experiences physiotherapy interventions for children with CP in scientific physiotherapy publications written by physiotherapists. Methods: A qualitative phenomenographic approach was used. Twenty-one scientific articles, found in PubMed, strategically chosen according to year of publication (2001-2009), modality, journals and country, were investigated. Results: Three qualitatively different descriptive categories were identified: A: Making it possible a functional-based intervention based on the biopsychosocial health paradigm, and the role of the physiotherapist as collaborative, interacting with the child and family in goal setting, intervention planning and evaluation, B: Making it work an impairment-based intervention built on a mixed health paradigm (biomedical and biopsychosocial), and the role of the physiotherapist as a coach, leading the goal setting, intervention planning and evaluation and instructing family members to carry out physiotherapist directed orders, and; C: Making it normal an impairment-based intervention built on a biomedical health paradigm, and the role of the physiotherapist as an authoritative expert who determine goals, intervention planning and evaluation. Conclusions: Different paradigms of health and disability lead to different approaches to physiotherapy which influence the whole intervention process regarding strategies for the assessment and treatment, all of which influence Family-Centred Service and the child's motor learning strategies. The results may deepen physiotherapists' understanding of how different paradigms of health influence the way in which various physiotherapy approaches in research seek to solve the challenge of CP

    Sphingomyelin Synthases Regulate Protein Trafficking and Secretion

    Get PDF
    Sphingomyelin synthases (SMS1 and 2) represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG). SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affected the formation of DAG at the Golgi apparatus. As a consequence, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein, protein kinase D (PKD), to the Golgi. Since PKD recruitment to the Golgi has been implicated in cellular secretion through the trans golgi network (TGN), the effect of down-regulation of SMSs on TGN-to-plasma membrane trafficking was studied. Down regulation of either SMS1 or SMS2 significantly retarded trafficking of the reporter protein vesicular stomatitis virus G protein tagged with GFP (VSVG-GFP) from the TGN to the cell surface. Inhibition of SMSs also induced tubular protrusions from the trans Golgi network reminiscent of inhibited TGN membrane fission. Since a recent study demonstrated the requirement of PKD activity for insulin secretion in beta cells, we tested the function of SMS in this model. Inhibition of SMS significantly reduced insulin secretion in rat INS-1 cells. Taken together these results provide the first direct evidence that both enzymes (SMS1 and 2) are capable of regulating TGN-mediated protein trafficking and secretion, functions that are compatible with PKD being a down-stream target for SMSs in the Golgi

    Summer warming explains widespread but not uniform greening in the Arctic tundra biome

    Get PDF
    Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades
    corecore