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Abstract 

In this work the evolution of the residual stresses in a MIG-welded 2024-T3 aluminium 

alloy M(T) specimen during in-situ fatigue crack growth at constant load amplitude has 

been measured with neutron diffraction. The plastic relaxation and plasticity-induced 

residual stresses associated with the fatigue loading were found to be small compared 

with the stresses arising due to elastic redistribution of the initial residual stress field. The 

elastic redistribution was modelled with a finite element simulation and a good 

correlation between the experimentally-determined and the modelled stresses was found. 

A significant mean stress effect on the fatigue crack growth rate was seen and this was 

also accurately predicted using the measured initial residual stresses.  

 

Keywords: Neutron diffraction, residual stresses, fatigue, welding, finite element analysis 
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1. Introduction 

Accounting for the effects of metal fatigue plays a major role in the design of optimized 

aerospace structures [1], as the constraints of reduced cost and increased design life of 

structures have changed the way new materials are introduced in the design cycle of new 

products. Aircraft design has moved from a purely performance-driven design approach 

to an approach which incorporates improved performance, extended operating life and 

reduced environmental impact of the aircraft structure [2]. 

Using large integral structural sections in the design of aerospace components can 

significantly reduce the weight of the final assembly. Such structures use new 

manufacturing methods, as for instance friction-stir welding, which replaces conventional 

joining methods such as riveting and bolting. However, unlike riveted structures, welded 

structures typically contain no crack stoppers that can retard or arrest fatigue crack 

propagation.  Another inherent inconvenience with welds is the residual stresses caused 

by the intense local heating. These stresses can significantly influence the fatigue life of 

engineering components [3-6]. Fail-safety and damage-tolerance regulations hence 

impose large safety factors where residual stresses may be present, and this reduces the 

weight competitiveness of integral structures. Thus, lifing models have to be verified in 

order to be able to fully exploit the advantages of welded integral structures. 

 

The linear elastic fracture mechanics method is the most frequently employed approach 

to account for the effect of an existing residual stress field on fatigue crack growth 

behaviour [7]. It is assumed that the principle of superposition is valid and that residual 
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stress redistribution is not affected by the presence of the small-scale plasticity associated 

with fatigue crack growth [8]. However, whilst allowing final crack growth lives to be 

predicted with reasonable accuracy, the form of the crack length versus load cycles curve 

is typically quite different from the test results, with initial crack growth being 

underestimated and later crack growth being overestimated [9, 10]. 

 

Therefore, detailed knowledge of the evolution of residual stresses with fatigue crack 

growth therefore has to be determined to assess and validate such models. Several 

researchers[11-14] have attempted to measure the residual stress relaxation that occurs 

with crack growth.  However, in the above papers the ‘crack’ was extended by machining 

a notch in the specimen.  Under these circumstances, elastic redistribution of the stress is 

expected and observed since the slot produced does not have the plasticity associated 

with a fatigue crack.  In addition, a machined notch, in contrast to a fatigue crack, cannot 

withstand a compressive traction and as a consequence, elastically relieves a compressive 

residual stress.   

 

Several researchers [15-18] have investigated the influence of the microstructural 

changes caused by welding procedures in various materials. These studies revealed that 

these changes have a relatively small influence on the fatigue crack growth rate. 

 

It has been suggested that one of the reasons why lifetime prediction in the presence of a 

strong residual stress fields is difficult is because of the residual stress redistribution that 
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occurs due to the interaction between the plasticity that accompanies the fatigue crack 

and the misfit strains that induced the original residual stress field [10, 19]. 

 

Neutron diffraction has been used for measurement of residual stresses in various types 

of materials and industrial components [20-22]. The method has been extensively applied 

to measure residual stresses in welds [23-27] as the stresses are usually high, the gauge 

volume typically used is small compared to the weld and the penetration depth of the 

neutron beam into the material is large.  Furthermore, the method is non-destructive at the 

point of application and is therefore ideal for the monitoring of residual stress fields in 

fatigued samples (although some components require the machining of access channels 

[28] and welds require the determination of a point-to-point stress-free lattice reference 

which requires extraction of material from the weld being measured or an identical 

component [29]). 

 

In previous work by the authors of this paper it has been shown by measurement and 

modelling that the evolution of the residual stresses in a welded M(T) and C(T) specimen 

loaded at constant ΔK is governed by elastic redistribution [30, 31]. It was further shown 

that if the initial residual stresses are known, the effect of the residual stresses on the 

fatigue crack growth rate can be predicted using a fracture mechanics approach [32]. 

 

The focus of the present work is to investigate if the residual stresses are governed by 

elastic redistribution also for a specimen loaded at constant load amplitude, i.e. with 

increasing stresses intensity factor and plastic deformation at the crack tip as the crack 
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length increases. Plastic deformation might cause a difference in the weld residual stress 

redistribution and relaxation which may invalidate the assumption of superposition. 

In this work, the residual stresses were measured with neutron diffraction in-situ during 

fatigue loading at the SALSA diffractometer of the ILL neutron source in Grenoble, 

France[33].  The re-distribution and the effect of the residual stresses on the crack tip 

stress intensity factor were predicted with a finite element simulation and Green’s 

functions. The fatigue crack growth rate through the weld was then predicted by 

accounting for R-ratio effects induced by the residual stresses, in conjunction with 

empirical fatigue crack growth rate curves.   

 

2. Experimental procedures 

 

The material and the specimens’ manufacture is presented in Section 2.1. In Section 2.2 

the procedures and the details of the residual stress measurements and the fatigue crack 

testing are given. 

 

2.1 Material and specimen preparation 

 

Metal-inert-gas (MIG) welding was used to manufacture 2024 aluminium plates 500 mm 

× 500 mm. The plates were welded with the weld direction parallel to the longitudinal 

plate orientation. Aluminium alloy 2024, heat treated to T351 specification, was used. A 

number of plates were welded, using nominally identical conditions, by the Welding 

Research Centre at Cranfield University, UK. The welding was carried out in two passes 
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with a travel speed of 450 mm min
–1

. The current and voltage used in the MIG welding 

process were 268 A and 24.3 V respectively. After welding the plate was skimmed down 

to 7 mm and the middle tension (M(T)) specimens were machined with the dimensions 

and orientations as shown in Fig. 1, according to ASTM E 647-00. An initial ‘defect’ 

with total length (2a) of 6.7 mm was machined on the weld line using Electro-Discharge 

Machining (EDM).  

 

2.1 Neutron diffraction and fatigue testing 

 

Neutron diffraction is an established non-destructive technique for determination of 

strains within metallic structures[20]. The inter-planar distance can be determined from 

the position of the diffraction peaks as realized by Bragg[34]: 

d
2sin

 
(1) 

where d is the inter-planar distance, λ is the wavelength of the scattering neutrons and θ is 

the angle between the incident ray and the scattering planes. The direct strain (ε) in the 

material in the measured direction can henceforth be computed if both the inter-planar 

distance of the stressed component (dσ) and an unstressed reference sample (d0) are 

measured, using the following expression: 

d d0

d0

sin 0

sin
1 

(2) 

The neutron diffraction measurements were carried out on the SALSA diffractometer[33] 

at the Institute Laue-Langevin in Grenoble, France. Aluminium is FCC (face centred 

cubic), and measurements were made using the {311} plane, as it gives a high 
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multiplicity and the elastic response of the {311} plane has been shown to correlate well 

with the macroscopic elastic response [35]. The wavelength was set to 1.7 Å (0.17 nm) to 

achieve a nearly cubic gauge volume by having a scattering angle (2θ) close to 90º. 

 

The stress-free lattice parameter can vary significantly in both the heat affected zone and 

in the weld material itself [36]. Thus, a stress-free reference comb sample was machined 

using EDM from sections of the original welded plate. The dimensions of the comb teeth 

(2.4 mm × 9 mm × 2.7 mm) were small enough to assure that they were virtually stress-

free [37]. The inter-planar distance could hence be determined as a function of the 

distance from the weld centre.  The gauge volume used for the stress-free sample was 1 

mm × 5 mm × 1 mm, with the longer dimension in the through-thickness direction to 

ensure that gauge volume was entirely within the ’fingers’ of the comb.  

 

The specimen was oriented edge-on to the neutron beam (Fig. 2), which is rotated 90˚ 

from the usual orientation which would be used to perform neutron diffraction 

measurements of the longitudinal strain component in a plate specimen.  Although this 

increases the neutron beam path length through the specimen, it allows the use of a gauge 

volume that extends through the thickness of the specimen (there is no spurious peak shift 

due to having the gauge volume partially outside the sample in the vertical direction), so 

reducing measurement times. The sample is relatively thin, tending towards plane stress 

rather than plane strain conditions, and no significant stress gradient is expected through 

the thickness [26].  Both the incoming and the receiving slits were set to 2 mm 

horizontally, and through the whole specimen thickness vertically.  Aluminium has a 
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relatively low neutron cross section and therefore the ~115 mm path length does not 

unduly affect the counting time, and measurements of lattice parameter to an accuracy of 

about 40 μ  (40  10
–6

) could be achieved in 3 minutes. 

 

Reference measurements were also carried out on a pure aluminium powder using the 

two different gauge volumes to be able to determine the small peak shift (<200 μ ) which 

occurred when the slits were altered for the measurements on the stress-free comb.  

 

Before fatiguing the specimen the residual stresses were measured along a line 55 mm 

from the notch, as indicated in Fig. 1, to obtain the initial and un-cracked stress 

distribution.   

 

The evolution of the residual stresses with fatigue crack growth was then measured by 

fatigue loading the specimen in-situ on the diffractometer. This was achieved by fixing a 

100 kN Instron servohydraulic stress rig on the SALSA sample table (Fig. 2). A 

sinusoidal shape was used for the load cycle with a maximum load of about 60 MPa and 

an R-ratio (ratio between the minimum and maximum load) of 0.1. The initial frequency 

was set to 10 Hz. As the fatigue crack growth was undertaken in situ in the neutron beam 

neither optical nor potential drop monitoring of crack length was feasible, and therefore 

the crack length was monitored with a fractomat gauge (FAC-20, Tokyo Sokki Kenkyojo 

Co., Ltd.).  More precise crack growth measurements were also carried out on nominally 

identical specimens on laboratory fatigue machines using potential drop crack length 

measurement. 
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The residual stresses were measured along the crack growth direction through the entire 

width of the specimen. The specimen was fatigued to grow the crack and then the 

specimen was un-loaded and the residual stresses were measured. After measurement in 

one direction the sample table was rotated 90º with the stress rig still fixed on top for 

measurement in the other (transverse) strain direction. This was repeated until a final 

crack length of 26 mm was reached. The applied ΔK increased during the test from 5.6 

MPa√m at the initial notch to 22 MPa√m at the final crack length. The stress ratio R was 

0.1. 

 

The majority of the strain measurements were taken at zero load, i.e., only residual 

stresses were determined. However, for some crack lengths, strains were also measured 

with the sample held at the maximum load in the fatigue cycle (Pmax).  

 

Plane stress conditions were assumed to exist in the plate, as the thickness was small 

compared with the width, and hence only the longitudinal and the transverse components 

had to be measured for computation of the residual stresses using the generalized form of 

Hooke’s law: 

 

i 2 i i

i

 (i 1,2,3)  

where µ =
E

2(1 + )
 , =

E

(1 + )(1 – 2 )
 , and E = 72 MPa and = 0.33 for the Al alloy. 

 

3. Experimental results 
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3.1 Comb measurements 

 

The variation of 2θ in the longitudinal and transverse directions in the stress-free comb 

sample is given in Fig. 3. It can be seen that there is a significant change in stress-free 

lattice spacing in the transition between the weld and parent material. The variation in 

both directions was similar, and this indicates that the reference samples were indeed 

stress-free. The difference seen between the two directions is indicative of some 

direction-dependence of the strain-free values, probably as a result of texture in the plate, 

which is generally a consequence of the rolling method used in its production. The 

variability in the parent material is also indicative of texture effects. However, the 

maximum difference between the two directions is relatively small, <90 μ . 

 

3.2 Measured evolution of residual strains and stresses with crack extension 

 

The strain values at each measurement position were computed using the measured 2θ in 

the stress free comb and the measured 2θ in the welded M(T) specimen (equation 2). The 

un-cracked and un-fatigued strain and stress distributions, along the uncracked line A-A’ 

as shown in figure 1, are shown in Figures 4a and 4b respectively. 

 

Lefebvre et al. have [38] measured the residual stresses in a specimen of the same 

material with similar dimensions, using near-surface X-ray diffraction, and found that the 

peak residual stresses were about 170 MPa. This is consistent with the values measured 

in this study in the bulk of the sample (Fig. 4b).  
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The residual stresses arise due to non-uniform expansion and contraction caused by the 

local heating during welding. The hot weld material yields easily, and on cooling down 

misfit strains are caused between the yielded and the un-yielded material. This induces 

large stresses parallel to the weld line (the longitudinal direction). As in most welds, 

tensile stresses exist in the regions close to the weld line and are balanced by compressive 

stresses further out.  The microstructural changes that occur in the weld and HAZ (heat 

affected zone) of this precipitation-hardened aluminium alloy produce a double residual 

stress peak on each side of the weld [25] as is seen in Fig. 4b. 

 

Only the longitudinal residual stresses will be discussed in this paper, as they will be 

primarily responsible for affecting the Mode I fatigue crack growth in this sample 

geometry. 

 

The full evolution of the longitudinal stresses, together with the Finite Element 

simulation results that will be described later are shown in Figures 5 (a) to (e). The 

uncertainty in measurement was calculated for each point but it is not plotted in these 

figures to allow for clearer visualization of the data.  The stress uncertainties, calculated 

from the uncertainty in the fit to each diffraction peak, were around ±7 MPa. 

 

It can be seen that the peak residual stress increases with crack growth until a crack 

length of about 14 mm from the weld centre. It can also be seen that the compressive 

region of the residual stress away from the crack tip is initially unaffected by the crack 

growth. Once the magnitude of the tensile stresses around the crack tip starts to decrease, 

the magnitude of the compressive stress also decreases to remain in equilibrium (Fig. 5).  
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The residual stresses are compared with the stresses measured in the specimen when 

loaded to Pmax in Fig. 6 (a) to (e). Here it can be seen that the residual stresses are larger 

in the tensile region than the stresses induced by the applied load until the crack length is 

about 20 mm. It should be noted that the peak residual stresses increase with crack length 

until about 14 mm, whereas the applied ΔK increases continuously with the crack length. 

The measured compressive residual stress field in the wake of the crack (behind the crack 

tip position) for the M(T) specimen (Fig. 4a) was independent of applied load and 

therefore cannot be due to physical crack closure. Tsakalakos et al.[39] and Croft et 

al.[40] have measured the residual strain within a fatigued C(T) specimen subjected to a 

single overload cycle using energy-dispersive synchrotron X-ray diffraction. They also 

found an apparent compressive stress in the wake of the crack (behind the crack tip) even 

after the specimen was completely fractured; hence again there is no physical closure. 

Compressive macro-stresses can be ruled out as the crack plane must be a traction-free 

surface. These authors suggested that these apparent stresses may be due to anisotropic 

plastic strains in the crack wake [40] or measurement error owing to the gauge volume 

differing in the two measured directions [39]. The assumption of plane stress may also 

have induced some errors in the computation of the stress, but performing the calculation 

using a plane strain assumption only affects the magnitude of the calculated stresses (with 

higher magnitudes in plane strain) and does not affect their sign. 

 

3.3 Fatigue crack rate through the specimen 
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The measured crack growth rate through the specimen, made on laboratory fatigue 

machines using potential drop crack length measurement carried out at Cranfield 

University, is shown in Fig. 7. This data was generated with exactly the same cyclic loads 

as the specimen tested at SALSA, i.e. ΔP = 30.34 kN, Pmax = 33.71 kN and R = 0.1. 

 

4. Residual stress modelling 

 

The commercial finite element (FE) code ABAQUS (standard version 6.5) was used for 

all the FE modelling. The plate was thin compared to the width and the gauge volume 

extended through the whole thickness, so plane stress conditions were assumed. Plane 

stress, 8 noded elements (CPS8) with full integration was used throughout this study. The 

smallest elements along the crack plane were 0.125 × 0.125 mm
2
.  

 

Two approaches were employed to introduce the measured residual stresses in the M(T) 

specimen FE models. The first is the eigenstrain approach [41]. Eigenstrain (ε*) is the 

non-uniform inelastic strain which causes elastic residual strains and hence stresses. 

Where the residual stresses are known throughout the whole component, then ε* can be 

determined from the following relation directly: 

* Cijkl
1

kl

RS
 (3) 

where C is the elastic constant tensor and σ
RS 

are the measured residual stresses. 

 

The stress distribution ahead of the notch was measured in the M(T) specimen before it 

was fatigued (Figure 5a). This stress distribution was assumed to represent the 
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distribution throughout the un-cracked specimen (i.e., assuming that the welded plate was 

continuously-processed). In this case, for a continuously-processed body with 2D 

symmetry, one eigenstrain component in the longitudinal direction will contribute to the 

residual stresses[42] as the other components satisfy the compatibility equation. The 

transverse stress will also be small in the un-cracked component. The eigenstrain was 

hence computed as follows: 

11 *(y) 11

RS(x)

E
 

(4) 

where E is the Young’s modulus for the material. The eigenstrain field was introduced 

into the FEA model using a pseudo-anisotropic thermal strain: the UEXPAN subroutine 

available in ABAQUS is used to define an orthotropic coefficient of thermal expansion as 

a function of position. The coefficient of thermal expansion was set to the value of the 

eigenstrain at each point and a unit temperature load was then applied to introduce the 

required inelastic strain. 

 

For comparison, the residual stress field was read in directly into the model using the 

SIGINI FORTRAN subroutine implemented in ABAQUS. This is the second approach 

taken for modelling the residual stress distribution. In the first step of this analysis, the 

stresses were allowed to equilibrate, simulating the residual stresses in the M(T) 

specimen.  

 

The resulting initial residual stresses using both the SIGINI subroutine and the 

eigenstrain approaches are shown in Fig. 8. There is an extremely good correlation 

between the two sets of FE results, and good agreement with the measured data. 
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Crack extension was then modelled by removing the boundary conditions along the 

symmetry line. In order to be able to compare the predictions with the experimental 

results, the stresses were averaged over those elements equivalent to the measured gauge 

volume to be able to compare the numerical results with the values obtained 

experimentally. The stresses averaged over the gauge volume converged readily despite 

the stress concentration at the crack tip (Fig. 9). 

 

The predicted elastic re-distribution with crack growth is shown in Fig. 5. The predicted 

stresses when the specimen was loaded are shown in Fig. 6. 

 

5. Modelling of the fatigue crack growth behaviour  

 

The evolution of the residual stress intensity factor with crack growth has to be computed 

in order to be able to predict the effect of the residual stresses on the fatigue crack growth 

rate. Two methods were used: Green’s functions, and a finite element approach. The 

predicted fatigue crack growth rate through the material was calculated using empirical 

fatigue crack growth curves. 

 

5.1 The evolution of the residual stress intensity factor 

 

Green’s functions 
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The residual stress intensity factor (Kres) is most commonly determined from weight and 

Green’s functions (h(x, a) using the initial un-cracked residual stress distribution, as 

derived by Bueckner[43]: 

Kres(a) h(x,a) res(x)dx
a

a

 
(5) 

where a is the crack length at which Kres is computed and σres is the initial residual stress 

distribution.  

 

Kanazawa’s[44] Green’s function for a crack growing from the centre of a plate, which 

accounts for finite width, is: 

h(x,a)
2sin

(a x)

W

W sin
2

W
sin

(a x)

W

1

2

 

(6) 

where W is the plate width of the specimen. The resulting residual stress intensity factor 

with increasing crack length is shown in Fig. 10. 

 

Contour interaction method 

 

The evolution of the residual stress intensity factor with crack growth was also 

determined with a finite element approach. The initial residual stresses were read into the 

model as explained in Section 4, and the crack growth was simulated by removing the 

symmetry boundary conditions. The stress intensity factor was determined through the 

contour interaction method implemented in ABAQUS. The contour interaction method is 

similar to the J-Integral method[45], but the stress intensities in each mode can be 

subtracted which is not the case with the J-Integral method.  
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The finite element results are compared with the results from the Green’s function 

solution in Fig. 10. There is very good correlation between the two solutions. 

 

5.2 Fatigue crack growth rate 

 

The effect of the residual stresses on the fatigue crack growth rate is often predicted 

either with a superposition approach or with a crack closure approach. The crack closure 

approach has been shown not to yield good predictions of the effect of tensile residual 

stresses at low to intermediate applied constant stress intensity factors, as the contribution 

of any crack closure is very small in this case and hence very difficult to measure[46].  

 

It has further been shown that, for positive R (Kmin/Kmax) in the case of positive residual 

stress intensity factors, the crack is opened further by the residual stresses and 

superposition is valid as no crack surface interactions occur as would be the case for a 

compressive residual stress field[32].  

 

In this study, there is a high tensile residual stress field present and hence the 

superposition approach was used.  

 

The superposition approach for prediction of the effects of the residual stress involves 

computation of the residual stress intensity factor (Kres) and then superposition of this to 

the stress intensity factor from the external loading (Kload), as follows: 
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Kmax Kload/max Kres 

 
Kmin Kload/min Kres 

(7) 

 

The stress intensity range (ΔK) and stress ratio (R) is then computed as[47]: 

K Kmax Kmin K load/max K load/min , R
Kmin

Kmax

 (8) 

 

In this approach only R changes and ΔK remains unaffected by the residual stresses. The 

applied ΔK for an M(T) specimen with the dimensions given in Figure 1 and loaded at a 

maximum load of 60.2 MPa and an R of 0.1 is given in Fig. 11a (standard solution for a 

through-crack) . The evolution of R is compared with the externally-applied R in Fig. 

11b. It can be seen that a considerable mean stress effect can be expected.  

 

The fatigue crack growth rate was predicted using the NASGRO equation. The NASGRO 

equation, which is effectively an empirical Paris-type relation in a sigmoid form where 

the R effect in included as in the given in the expression below (equation 8): 

da

dN
C

1 f

1 R
K

n 1
K th
K

p

1
Kmax

Kcrit

q
 

(9) 

where C, n, p, q and f are empirical material parameters. The relevant material constants 

for 2024-T351 are available in the AFGROW database[48]. The predicted fatigue crack 

growth rate through the weld residual stress field can be seen in Fig. 7. The data is 

compared with prediction of the FCGR without including the effect of the residual 

stresses. It can be seen that the residual stresses accelerate the fatigue crack growth rate 

considerably. 
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6. Discussion 

 

In prior work [28] the residual stress re-distribution in a VPPA-welded M(T) specimen 

was investigated. In that work the specimen was loaded at constant ∆K = 6 MPa√m. The 

macroscopic stress redistribution also appeared to be elastic in that case. The current 

experiment was mainly carried out to investigate if this also was valid for a MIG weld, 

but more importantly whether a specimen loaded with a constant load – i.e., increasing 

∆K with crack length – would show residual stresses re-distribution governed by the 

elastic re-distribution of the initial residual stress field or be affected by the plasticity 

induced during. 

 

The measured residual stresses were seen to initially increase with crack length and then 

at long crack lengths to decrease (Fig. 5). The modelled elastic redistribution of the initial 

residual stress field showed the same characteristics. This indicates that the residual stress 

distribution with fatigue crack growth is governed by elastic redistribution, and that the 

local crack tip stresses and the associated plastic zone have a minor significance, at least 

at this level of resolution.  

 

The measured residual stress peaks were seen to be slightly further out from the weld 

centre than the modelled stresses (Fig. 5). This might be due to the effect of crack tip 

plasticity, which pushes the peaks stresses forward[30]. There may also be an effect 

because the crack length was measured with Fractomat gauges, which is not a precision 



ACCEPTED MANUSCRIPT 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 20 

technique.  The slight overestimation of the peak stresses might also be due to plastic 

effects which were not included in the FE model. Plasticity was not included as one of 

the objectives of this study was to investigate if linear elastic fracture mechanics can be 

used in the prediction of the FCGR in the presence of a strong residual stress field.   

 

The apparent compressive stress in the wake of the crack must however be due to a 

measurement error, as the these stresses are not relieved when the specimen is loaded to 

the maximum load in the fatigue cycle (Fig. 6). From this figure it can also been seen that 

elastic superposition seems to be valid as modelling and the measurement are in good 

correlation.  The stresses in an identical specimen without residual stresses at the 

maximum load at the fatigue cycle were estimated by subtracting the measured stresses at 

Pmax with the stresses at zero load.  The good agreement with the modelled stresses in the 

body at the maximum load without any residual stresses and this estimate also indicates 

that elastic superposition is valid. 

 

However, it has to be highlighted that when referring to plasticity effects on the residual 

stresses, the important condition in this context – the effect on the fatigue crack growth 

behaviour – is that the plasticity does not re-distribute the residual field differently 

compared with stress arising from an external load.  It is therefore only necessary to 

implicitly include plasticity by use of the empirical fatigue crack growth laws derived 

from fatigue data where plasticity is obviously present.  
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The residual stresses would be expected to induce a significant mean stress effect and this 

is seen as an accelerated fatigue crack growth rate in the M(T) specimen compared with 

the parent material data (Fig. 7). 

 

This increase was also expected, as both the Greens function and FE models of the 

residual stress intensity factor evolution with crack extension showed a high positive 

value (Fig. 9). It can also been seen that the relation between the difference between the 

measured stresses at the maximum load and the residual stresses in the unloaded 

condition (Fig. 6) is in the same order of magnitude as the relation between the applied 

stress intensity factor (Fig. 10a) and the residual stress intensity factor (Fig. 9). This 

reinforces the validity of the residual stress intensity factor computation. 

 

The predicted FCGR in the welded M(T) specimens agreed well with the experimental 

results.  The solution was however slightly conservative, and more so at shorter crack 

lengths.  This might be due the microstructural changes in the weld and in the transition 

between the HAZ and the parent material, which are not included in the model at this 

time. 

 

7. Concluding remarks 

 

1. Neutron diffraction has been used to measure the evolution of residual stress as a crack 

is grown through a weld residual stress field, at a constant load range (i.e., increasing ∆K 
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as the crack grows). The results have been compared with the predicted stress relaxation 

from an elastic finite element model. 

 

2. The effect of the weld residual stress field on fatigue crack growth rate has been 

predicted using FE and Green’s function approaches. Improved correlation with the 

experimentally-observed crack growth rates is obtained when the residual stresses are 

included in the crack growth model. 

 

3. The re-distribution of the residual stress field can be predicted with good accuracy 

using the assumption of elastic re-distribution only. Therefore the plasticity associated 

with the fatigue crack growth has only a minimal effect on the residual stress 

redistribution. 

 

4. It can hence be concluded that the evolution of the residual stresses at this level of 

resolution are governed by elastic re-distribution even at constant load, and that linear 

elastic fracture mechanics can be used successfully in the assessment of the fatigue 

behaviour if the initial residual stress field in the component is known. 
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FIGURE CAPTIONS 

 

 

Fig. 1 Schematic and dimensions of the M(T) geometry specimens. (WP: weld pool, 

NHAZ: near heat-affected zone, FHAZ: far heat-affected zone). The heat-affected zone 

extended on average about 15 mm either side of the weld centre. 

 

Fig. 2 Set-up at the SALSA diffractometer for measurement of the longitudinal strain 

direction in the M(T) specimen 

 

Fig. 3 Variation of 2θ in the comb with distance from the weld centre 

 

Fig. 4 Measured residual a) strains and b) stresses along the un-cracked path in the M(T) 

specimen 
 

Fig. 5 Residual stresses in the longitudinal direction at crack lengths a of: a) 0, 3 mm, b) 

7, 9 mm, c) 11, 13 mm, d) 15, 17 mm and e) 19, 21. The crack length values have been 

averaged and rounded for clarity, although the crack growth was found to be highly 

symmetric.. Modelled data are also plotted, and are discussed in section 4. The number in 

the legends corresponds to the crack length in mm. The 0 legend points correspond to the 

data measured along the un-cracked path. 

 

Fig. 6 Comparison between the longitudinal stresses in the unloaded condition and at 

Pmax at crack lengths of a) 7 mm and b) 20 mm, for both measured and modelled results. 

Data is shown for the residual stress with no load (RS); residual stress plus applied load 

(P + RS); and for the effects of the load (obtained directly from the FEA, and by 

subtracting the difference between the loaded and unloaded experimental data. 

 

Fig. 7 Experimentally measured fatigue crack growth rate in the M(T) specimen. The 

experimental data is also compared with the prediction of the fatigue crack growth rate, 

with and without taking into account the residual stresses. The procedures for the 

predictions are explained in section 5.2.  

 

Fig. 8 Modelled and measured initial un-cracked stress distribution in the longitudinal 

direction 

 

Fig. 9 Mesh convergence of stresses averaged over the gauge volume (at 17 mm crack 

length).   

 

Fig. 10 Evolution of Kres with crack position from the weld centre for the M(T) specimen 

(comparison between FEA and weight function approaches) 

 

Fig. 11 a) Applied ΔK and b) Evolution of the effective R with crack growth from the 

weld centre for the M(T) specimen 
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