528 research outputs found

    Robust Estimators in Generalized Pareto Models

    Full text link
    This paper deals with optimally-robust parameter estimation in generalized Pareto distributions (GPDs). These arise naturally in many situations where one is interested in the behavior of extreme events as motivated by the Pickands-Balkema-de Haan extreme value theorem (PBHT). The application we have in mind is calculation of the regulatory capital required by Basel II for a bank to cover operational risk. In this context the tail behavior of the underlying distribution is crucial. This is where extreme value theory enters, suggesting to estimate these high quantiles parameterically using, e.g. GPDs. Robust statistics in this context offers procedures bounding the influence of single observations, so provides reliable inference in the presence of moderate deviations from the distributional model assumptions, respectively from the mechanisms underlying the PBHT.Comment: 26pages, 6 figure

    Модернізація стоматологічної установки УС- 30

    Get PDF
    Background: The novel chemokine CXCL17 acts as chemoattractant for monocytes, macrophages and dendritic cells. CXCL17 also has a role in angiogenesis of importance for tumour development. Methods: Expression of CXCL17, CXCL10, CXCL9 and CCL2 was assessed in primary colon cancer tumours, colon carcinoma cell lines and normal colon tissue at mRNA and protein levels by real-time qRT-PCR, immunohistochemistry, two-colour immunofluorescence and immunomorphometry. Results: CXCL17 mRNA was expressed at 8000 times higher levels in primary tumours than in normal colon (P<0.0001). CXCL17 protein was seen in 17.2% of cells in tumours as compared with 0.07% in normal colon (P = 0.0002). CXCL10, CXCL9 and CCL2 mRNAs were elevated in tumours but did not reach the levels of CXCL17. CXCL17 and CCL2 mRNA levels were significantly correlated in tumours. Concordant with the mRNA results, CXCL10-and CXCL9-positive cells were detected in tumour tissue, but at significantly lower numbers than CXCL17. Two-colour immunofluorescence and single-colour staining of consecutive sections for CXCL17 and the epithelial cell markers carcinoembryonic antigen and BerEP4 demonstrated that colon carcinoma tumour cells indeed expressed CXCL17. Conclusions: CXCL17 is ectopically expressed in primary colon cancer tumours. As CXCL17 enhances angiogenesis and attracts immune cells, its expression could be informative for prognosis in colon cancer patients

    L1CAM mutation in association with X-linked hydrocephalus and Hirschsprung’s disease

    Get PDF
    X-linked hydrocephalus (XLH) is characterized by increased intracranial ventricle size and head circumference secondary to aqueduct of Sylvius congenital stenosis. Exceedingly rare is the concurrence of XLH and Hirschsprung’s disease (HSCR) with a theoretical incidence of 1 in 125–250 million cases. Herein, we are describing a case of a patient with concurrent XLH and HSCR. The patient was delivered via cesarean section at 37 weeks gestation and underwent uneventful ventriculoperitoneal shunt placement. As a part of a workup for constipation, we performed a rectal biopsy, which was consistent with HSCR. Genetics testing showed hemizygous for R558X hemizygous mutation in the L1CAM gene. A C → T nucleotide substitution in exon 13 resulted in replacement of an arginine codon with a stop codon, a nonsense mutation. Although it is widely accepted that HSCR represents the failure of early embryonic neural crest cells to migrate properly, the exact mechanism is not known. The association of HSCR with XLH in the presence of L1CAM mutations remains quite interesting because cell adhesion molecules are involved in the proper migration of neural components throughout the body. Additional studies are necessary to fully elucidate the relationship between XLH and HSCR in the presence of L1CAM mutations

    Ischaemic strokes in patients with pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia: associations with iron deficiency and platelets.

    Get PDF
    <div><p>Background</p><p>Pulmonary first pass filtration of particles marginally exceeding ∼7 µm (the size of a red blood cell) is used routinely in diagnostics, and allows cellular aggregates forming or entering the circulation in the preceding cardiac cycle to lodge safely in pulmonary capillaries/arterioles. Pulmonary arteriovenous malformations compromise capillary bed filtration, and are commonly associated with ischaemic stroke. Cohorts with CT-scan evident malformations associated with the highest contrast echocardiographic shunt grades are known to be at higher stroke risk. Our goal was to identify within this broad grouping, which patients were at higher risk of stroke.</p><p>Methodology</p><p>497 consecutive patients with CT-proven pulmonary arteriovenous malformations due to hereditary haemorrhagic telangiectasia were studied. Relationships with radiologically-confirmed clinical ischaemic stroke were examined using logistic regression, receiver operating characteristic analyses, and platelet studies.</p><p>Principal Findings</p><p>Sixty-one individuals (12.3%) had acute, non-iatrogenic ischaemic clinical strokes at a median age of 52 (IQR 41–63) years. In crude and age-adjusted logistic regression, stroke risk was associated not with venous thromboemboli or conventional neurovascular risk factors, but with low serum iron (adjusted odds ratio 0.96 [95% confidence intervals 0.92, 1.00]), and more weakly with low oxygen saturations reflecting a larger right-to-left shunt (adjusted OR 0.96 [0.92, 1.01]). For the same pulmonary arteriovenous malformations, the stroke risk would approximately double with serum iron 6 µmol/L compared to mid-normal range (7–27 µmol/L). Platelet studies confirmed overlooked data that iron deficiency is associated with exuberant platelet aggregation to serotonin (5HT), correcting following iron treatment. By MANOVA, adjusting for participant and 5HT, iron or ferritin explained 14% of the variance in log-transformed aggregation-rate (p = 0.039/p = 0.021).</p><p>Significance</p><p>These data suggest that patients with compromised pulmonary capillary filtration due to pulmonary arteriovenous malformations are at increased risk of ischaemic stroke if they are iron deficient, and that mechanisms are likely to include enhanced aggregation of circulating platelets.</p></div

    Metabolic cutis laxa syndromes

    Get PDF
    Cutis laxa is a rare skin disorder characterized by wrinkled, redundant, inelastic and sagging skin due to defective synthesis of elastic fibers and other proteins of the extracellular matrix. Wrinkled, inelastic skin occurs in many cases as an acquired condition. Syndromic forms of cutis laxa, however, are caused by diverse genetic defects, mostly coding for structural extracellular matrix proteins. Surprisingly a number of metabolic disorders have been also found to be associated with inherited cutis laxa. Menkes disease was the first metabolic disease reported with old-looking, wrinkled skin. Cutis laxa has recently been found in patients with abnormal glycosylation. The discovery of the COG7 defect in patients with wrinkled, inelastic skin was the first genetic link with the Congenital Disorders of Glycosylation (CDG). Since then several inborn errors of metabolism with cutis laxa have been described with variable severity. These include P5CS, ATP6V0A2-CDG and PYCR1 defects. In spite of the evolving number of cutis laxa-related diseases a large part of the cases remain genetically unsolved. In metabolic cutis laxa syndromes the clinical and laboratory features might partially overlap, however there are some distinct, discriminative features. In this review on metabolic diseases causing cutis laxa we offer a practical approach for the differential diagnosis of metabolic cutis laxa syndromes

    Orexin-1 Receptor Co-Localizes with Pancreatic Hormones in Islet Cells and Modulates the Outcome of Streptozotocin-Induced Diabetes Mellitus

    Get PDF
    Recent studies have shown that orexins play a critical role in the regulation of sleep/wake states, feeding behaviour, and reward processes. The exocrine and endocrine pancreas are involved in the regulation of food metabolism and energy balance. This function is deranged in diabetes mellitus. This study examined the pattern of distribution of orexin-1 receptor (OX1R) in the endocrine cells of the pancreas of normal and diabetic Wistar (a model of type 1 diabetes), Goto-Kakizaki (GK, a model of type 2 diabetes) rats and in orexin-deficient (OX−/−) and wild type mice. Diabetes mellitus (DM) was induced in Wistar rats and mice by streptozotocin (STZ). At different time points (12 h, 24 h, 4 weeks, 8 months and 15 months) after the induction of DM, pancreatic fragments of normal and diabetic rats were processed for immunohistochemistry and Western blotting. OX1R-immunoreactive nerves were observed in the pancreas of normal and diabetic Wistar rats. OX1R was also discernible in the pancreatic islets of normal and diabetic Wistar and GK rats, and wild type mice. OX1R co-localized with insulin (INS) and glucagon (GLU) in the pancreas of Wistar and GK rats. The number of OX1R-positive cells in the islets increased markedly (p<0.0001) after the onset of DM. The increase in the number of OX1R-positive cells is associated with a high degree of co-localization with GLU. The number of GLU- positive cells expressing OX1R was significantly (p<0.0001) higher after the onset of DM. The tissue level of OX1R protein increased with the duration of DM especially in type 1 diabetes where it co-localized with cleaved caspase 3 in islet cells. In comparison to STZ-treated wild type mice, STZ-treated OX−/− animals exhibited reduced hyperglycemia and handled glucose more efficiently in glucose tolerance test. The findings suggest an important role for the OX-OX1R pathway in STZ-induced experimental diabetes
    corecore