1,365 research outputs found

    Osteoarthritis and the inflammatory arthritides

    Get PDF
    © 2017. This article aims to provide surgeons with a practical, clinical overview of different forms of 'arthritis' - a term encompassing most of the joint pathology causing joint symptoms or dysfunction. Conventionally, arthritis can be non-inflammatory (osteoarthritis) or inflammatory (crystal and autoimmune arthropathies). Septic arthritis is an important differential diagnosis when patients present with tender, swollen joints but is not covered in detail here. Common symptoms and signs in patients with different types of arthritis are reviewed, as well as aetiology and pathogenesis. Non-surgical treatment is described, with particular reference to the inflammatory arthropathies since the new, effective biologic treatments are particularly important where surgery is planned or patients present with suspected sepsis. Diagnosis of inflammatory arthritis (particularly in children) may be delayed and in an era of effective treatment it is important that all clinicians involved in musculoskeletal medicine and surgery are aware of potential differential diagnoses for joint pain and deformity. Good communication between rheumatologists and surgeons in managing different forms of arthritis is especially important

    IgG4-related disease presenting with raised serum IgG2-real timeline of IgG4-RD?

    Get PDF
    Elevation of serum IgG2 may be a precursor to classical IgG4-related diseas

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectra

    Get PDF
    We present the temperature and polarization angular power spectra of the cosmic microwave background (CMB) derived from the first 5 years of WMAP data. The 5-year temperature (TT) spectrum is cosmic variance limited up to multipole l=530, and individual l-modes have S/N>1 for l<920. The best fitting six-parameter LambdaCDM model has a reduced chi^2 for l=33-1000 of chi^2/nu=1.06, with a probability to exceed of 9.3%. There is now significantly improved data near the third peak which leads to improved cosmological constraints. The temperature-polarization correlation (TE) is seen with high significance. After accounting for foreground emission, the low-l reionization feature in the EE power spectrum is preferred by \Delta\chi^2=19.6 for optical depth tau=0.089 by the EE data alone, and is now largely cosmic variance limited for l=2-6. There is no evidence for cosmic signal in the BB, TB, or EB spectra after accounting for foreground emission. We find that, when averaged over l=2-6, l(l+1)C^{BB}_l/2\pi < 0.15 uK^2 (95% CL).Comment: 29 pages, 13 figures, accepted by ApJ

    Variograms of the Cosmic Microwave Background Temperature Fluctuations: Confirmation of Deviations from Statistical Isotropy

    Full text link
    The Standard Inflationary model predicts an isotropic distribution of the Cosmic Microwave Background temperature fluctuations. Detection of deviations from statistical isotropy would call for a revision of the physics of the early universe. This paper introduces the variogram as a powerful tool to detect and characterize deviations from statistical isotropy in Cosmic Microwave Background maps. Application to the Wilkinson Microwave Anisotropy Probe data clearly shows differences between the northern and the southern hemispheres. The sill and range of the northern hemisphere's variogram are lower than those of the southern hemisphere. Moreover the variogram for the northern hemisphere lies outside the 99% c.l. for scales above ten degrees. Differences between the northern and southern hemispheres in the functional dependence of the variogram with the scale can be used as a validation bench mark for proposed anisotropic cosmological models.Comment: submitted to MNRA

    Early search for supersymmetric dark matter models at the LHC without missing energy

    Full text link
    We investigate early discovery signals for supersymmetry at the Large Hadron Collider without using information about missing transverse energy. Instead we use cuts on the number of jets and isolated leptons (electrons and/or muons). We work with minimal supersymmetric extensions of the standard model, and focus on phenomenological models that give a relic density of dark matter compatible with the WMAP measurements. An important model property for early discovery is the presence of light sleptons, and we find that for an integrated luminosity of only 200--300 pb1^{-1} at a center-of-mass energy of 10 TeV models with gluino masses up to 700\sim 700 GeV can be tested.Comment: 28 pages, 12 figures; published versio

    Impact of Systematics on SZ-Optical Scaling Relations

    Full text link
    One of the central goals of multi-wavelength galaxy cluster cosmology is to unite all cluster observables to form a consistent understanding of cluster mass. Here, we study the impact of systematic effects from optical cluster catalogs on stacked SZ signals. We show that the optically predicted Y-decrement can vary by as much as 50% based on the current 2 sigma systematic uncertainties in the observed mass-richness relationship. Mis-centering and impurities will suppress the SZ signal compared to expectations for a clean and perfectly centered optical sample, but to a lesser degree. We show that the level of these variations and suppression is dependent on the amount of systematics in the optical cluster catalogs. We also study X-ray luminosity-dependent sub-sampling of the optical catalog and find that it creates Malmquist bias increasing the observed Y-decrement of the stacked signal. We show that the current Planck measurements of the Y-decrement around SDSS optical clusters and their X-ray counterparts are consistent with expectations after accounting for the 1 sigma optical systematic uncertainties using the Johnston mass richness relation.Comment: 6 pages, 4 figures. Revised to match version accepted in the Astrophysical Journa

    Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results

    Get PDF
    We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter LCDM model. When WMAP data are combined with measurements of the high-l CMB anisotropy, the BAO scale, and the Hubble constant, the densities, Omegabh2, Omegach2, and Omega_L, are each determined to a precision of ~1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional LCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their LCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r<0.13 (95% CL); the spatial curvature parameter is limited to -0.0027 (+0.0039/-0.0038); the summed mass of neutrinos is <0.44 eV (95% CL); and the number of relativistic species is found to be 3.84+/-0.40 when the full data are analyzed. The joint constraint on Neff and the primordial helium abundance agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent PLANCK measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe.Comment: 32 pages, 12 figures, v3: Version accepted to Astrophysical Journal Supplement Series. Includes improvements in response to referee and community; corrected 3 entries in Table 10, (w0 & wa model). See the Legacy Archive for Microwave Background Data Analysis (LAMBDA): http://lambda.gsfc.nasa.gov/product/map/current/ for further detai

    The Wilkinson Microwave Anisotropy Probe (WMAP) Source Catalog

    Get PDF
    We present the list of point sources found in the WMAP 5-year maps. The technique used in the first-year and three-year analysis now finds 390 point sources, and the five-year source catalog is complete for regions of the sky away from the galactic plane to a 2 Jy limit, with SNR > 4.7 in all bands in the least covered parts of the sky. The noise at high frequencies is still mainly radiometer noise, but at low frequencies the CMB anisotropy is the largest uncertainty. A separate search of CMB-free V-W maps finds 99 sources of which all but one can be identified with known radio sources. The sources seen by WMAP are not strongly polarized. Many of the WMAP sources show significant variability from year to year, with more than a 2:1 range between the minimum and maximum fluxes.Comment: 31 pages Latex with 4 embedded figures. Version accepted by the ApJ Supplement
    corecore