3,211 research outputs found
Event-Triggered Observers and Observer-Based Controllers for a Class of Nonlinear Systems
In this paper, we investigate the stabilization of a nonlinear plant subject
to network constraints, under the assumption of partial knowledge of the plant
state. The event triggered paradigm is used for the observation and the control
of the system. Necessary conditions, making use of the ISS property, are given
to guarantee the existence of a triggering mechanism, leading to asymptotic
convergence of the observer and system states. The proposed triggering
mechanism is illustrated in the stabilization of a robot with a flexible link
robot.Comment: Proceedings of the 2015 American Control Conference - ACC 201
Evaluating the effect of information accuracy on travellers' concordance with Advanced Traveller Information Systems
Microwave intermodulation distortion of MgB2 thin films
The two tone intermodulation arising in MgB2 thin films deposited in-situ by
planar magnetron sputtering on sapphire substrates is studied. Samples are
characterised using an open-ended dielectric puck resonator operating at 8.8
GHz. The experimental results show that the third order products increase with
the two-tone input power with a slope ranging between 1.5 and 2.3. The
behaviour can be understood introducing a mechanism of vortex penetration in
grain boundaries as the most plausible source of non linearities in these
films. This assumption is confirmed by the analysis of the field dependence of
the surface resistance, that show a linear behaviour at all temperatures under
test.Comment: 13 pages, 3 figures; to be published in Appl. Phys. Let
Cosmic dance in the Shapley Concentration Core - I. A study of the radio emission of the BCGs and tailed radio galaxies
The Shapley Concentration () covers several degrees in the
Southern Hemisphere, and includes galaxy clusters in advanced evolutionary
stage, groups of clusters in the early stages of merger, fairly massive
clusters with ongoing accretion activity, and smaller groups located in
filaments in the regions between the main clusters. With the goal to
investigate the role of cluster mergers and accretion on the radio galaxy
population, we performed a multi-wavelength study of the BCGs and of the
galaxies showing extended radio emission in the cluster complexes of Abell 3528
and Abell 3558. Our study is based on a sample of 12 galaxies. We observed the
clusters with the GMRT at 235, 325 and 610 MHz, and with the VLA at 8.46 GHz.
We complemented our study with the TGSS at 150 MHz, the SUMSS at 843 MHz and
ATCA at 1380, 1400, 2380, and 4790 MHz data. Optical imaging with ESO-VST and
mid-IR coverage with WISE are also available for the host galaxies. We found
deep differences in the properties of the radio emission of the BCGs in the two
cluster complexes. The BCGs in the A3528 complex and in A3556, which are
relaxed cool-core objects, are powerful active radio galaxies. They also
present hints of restarted activity. On the contrary, the BCGs in A3558 and
A3562, which are well known merging systems, are very faint, or quiet, in the
radio band. The optical and IR properties of the galaxies are fairly similar in
the two complexes, showing all passive red galaxies. Our study shows remarkable
differences in the radio properties of the BGCs, which we relate to the
different dynamical state of the host cluster. On the contrary, the lack of
changes between such different environments in the optical band suggests that
the dynamical state of galaxy clusters does not affect the optical counterparts
of the radio galaxies, at least over the life-time of the radio emission.Comment: 24 pages, 11 figures, accepted for publication in Astronomy &
Astrophysic
Black hole evaporation in a spherically symmetric non-commutative space-time
Recent work in the literature has studied the quantum-mechanical decay of a
Schwarzschild-like black hole, formed by gravitational collapse, into
almost-flat space-time and weak radiation at a very late time. The relevant
quantum amplitudes have been evaluated for bosonic and fermionic fields,
showing that no information is lost in collapse to a black hole. On the other
hand, recent developments in noncommutative geometry have shown that, in
general relativity, the effects of non-commutativity can be taken into account
by keeping the standard form of the Einstein tensor on the left-hand side of
the field equations and introducing a modified energy-momentum tensor as a
source on the right-hand side. Relying on the recently obtained
non-commutativity effect on a static, spherically symmetric metric, we have
considered from a new perspective the quantum amplitudes in black hole
evaporation. The general relativity analysis of spin-2 amplitudes has been
shown to be modified by a multiplicative factor F depending on a constant
non-commutativity parameter and on the upper limit R of the radial coordinate.
Limiting forms of F have been derived which are compatible with the adiabatic
approximation.Comment: 8 pages, Latex file with IOP macros, prepared for the QFEXT07
Conference, Leipzig, September 200
Competition of lattice and spin excitations in the temperature dependence of spin-wave properties
The interplay of magnons and phonons can induce strong temperature variations in the magnetic exchange interactions, leading to changes in the magnetothermal response. This is a central mechanism in many magnetic phenomena, and in the new field of Spin Caloritronics, which focuses on the combination of heat and spin currents. Boson model systems have previously been developed to describe the magnon phonon coupling, but until recently studies rely on empirical parameters. In this work we propose a first principles approach to describe the dependence of the magnetic exchange integrals on phonon renormalization, leading to changes in the magnon dispersion as a function of temperature. The temperature enters into the spin dynamics (by introducing fluctuations) as well as in the magnetic exchange itself. Depending on the strength of the coupling, these two temperatures may or may not be equilibrated, yielding different regimes. We test our approach in typical and well known ferromagnetic materials: Ni, Fe, and Permalloy. We compare our results to recent experiments on the spin-wave stiffness, and discuss departures from Bloch’s law and parabolic dispersion
Lines on projective varieties and applications
The first part of this note contains a review of basic properties of the
variety of lines contained in an embedded projective variety and passing
through a general point. In particular we provide a detailed proof that for
varieties defined by quadratic equations the base locus of the projective
second fundamental form at a general point coincides, as a scheme, with the
variety of lines. The second part concerns the problem of extending embedded
projective manifolds, using the geometry of the variety of lines. Some
applications to the case of homogeneous manifolds are included.Comment: 15 pages. One example removed; one remark and some references added;
typos correcte
Frontal Functional Connectivity of Electrocorticographic Delta and Theta Rhythms during Action Execution Versus Action Observation in Humans
We have previously shown that in seven drug-resistant epilepsy patients, both reaching-grasping of objects and the mere observation of those actions did desynchronize subdural electrocorticographic (ECoG) alpha (8–13 Hz) and beta (14–30) rhythms as a sign of cortical activation in primary somatosensory-motor, lateral premotor and ventral prefrontal areas (Babiloni et al., 2016a). Furthermore, that desynchronization was greater during action execution than during its observation. In the present exploratory study, we reanalyzed those ECoG data to evaluate the proof-of-concept that lagged linear connectivity (LLC) between primary somatosensory-motor, lateral premotor and ventral prefrontal areas would be enhanced during the action execution compared to the mere observation due to a greater flow of visual and somatomotor information. Results showed that the delta-theta (<8 Hz) LLC between lateral premotor and ventral prefrontal areas was higher during action execution than during action observation. Furthermore, the phase of these delta-theta rhythms entrained the local event-related connectivity of alpha and beta rhythms. It was speculated the existence of a multi-oscillatory functional network between high-order frontal motor areas which should be more involved during the actual reaching-grasping of objects compared to its mere observation. Future studies in a larger population should cross-validate these preliminary results
The out of plane behaviour of masonry infilled frames
The great interest about out of plane behavior of masonry infill walls has recently increased since it is a key point in the seismic modelling of framed structures. Their contribute to the whole seismic resistance of a framed building cannot be skipped. After a review of the literature on the subject, this paper presents a trilinear constitutive model for the out of plane behavior of masonry infills based on the tensile strength of the constituents. Comparisons with literature model are provided and the identification of the model is based on experimental tests
- …
