415 research outputs found
A comprehensive characterization and expression profiling of defensin family peptides in Arabidopsis thaliana with a focus on their abiotic stress-specific transcriptional modulation
In addition to defensins, plants possess an array of defensin-like peptides that share many of their characteristics, as well as a role in plant's innate immunity. Their involvement in the response to pathogens is well-known but the contribution in the plant response to abiotic stimuli is not fully understood. We have undertaken an in silico analysis to characterize all defensin family genes hitherto found in Arabidopsis, including genes encoding for defensin-like peptides, by detecting several peptides as candidates for further studies aiming to decipher specific responses to biotic and abiotic stresses, as well as to their crosstalk. We performed several analyses, including co- expression and cis-regulatory elements analyses, using transcriptomic data obtained from the ARS database, which integrates more than 20,000 Arabidopsis RNA-seq libraries. In silico analysis showed that jasmonates and ABA, together with transcription factors belonging to WRKY and AP2/EREBP families, modulate defensin and defensin-like gene expression. Indeed, the analysis performed in this study allowed to extract and organize omics data, which finally supported the inducible nature of defensins under both abiotic and biotic stresses. Moreover, in vivo expression analyses confirmed the heat and drought responsiveness of PDF1.4, , ATTI1, , PDF1.1, , DEFL 206, , defensin family genes selected for being upregulated by several abiotic conditions, at transcriptional level. Finally, the co-expression analysis provided information on other biological processes that may be correlated to the defensin induction, such as maintaining ROS homeostasis. Combining the comprehensive analysis of different transcriptional datasets with the integration of in vivo analyses emerged as a robust methodological approach to assess the proposed multi-stress responsive nature of defensin family genes
Comparison between in vitro chemical and ex vivo biological assays to evaluate antioxidant capacity of botanical extracts
The anti-oxidative activity of plant-derived extracts is well-known and confers health-promoting effects on functional foods and food supplements. Aim of this work is to evaluate the capability of two different assays to predict the real biological antioxidant efficiency. At this purpose, extracts from five different plant-derived matrices and commercial purified phytochemicals were analyzed for their anti-oxidative properties by using well-standardized in vitro chemical method (TEAC) and an ex vivo biological assay. The biological assay, a cellular membrane system obtained from erythrocytes of healthy volunteers, is based on the capability of phytochemicals treatment to prevent membrane lipid peroxidation under oxidative stress by UV-B radiation. Plant extracts naturally rich in phenols with different structure and purified phytochemicals showed different in vitro and ex vivo antioxidant capacities. A high correlation between phenolic contents of the plant-derived extracts and their ability to prevent oxidative injuries in a biological system was found, thus underlying the relevance of this class of metabolites in preventing oxidative stress. On the other hand, a low correlation between the antioxidant capacities was shown between in vitro and ex vivo antioxidant assay. Moreover, data presented in this work show how food complex matrices are more effective in preventing oxidative damages at biological level than pure phytochemicals, even if for these latter, the antioxidant activity was generally higher than that observed for food complex matrices
The Economic Impact of Weight Regain
Background. Obesity is well known for being associated with significant economic repercussions. Bariatric surgery is the only evidence-based solution to this problem as well as a cost-effective method of addressing the concern. Numerous authors have calculated the cost effectiveness and cost savings of bariatric surgery; however, to date the economic impact of weight regain as a component of overall cost has not been addressed. Methods. The literature search was conducted to elucidate the direct costs of obesity and primary bariatric surgery, the rate of weight recidivism and surgical revision, and any costs therein. Results. The quoted cost of obesity in Canada was 6.7 billion in 2013 CAD. The median percentage of bariatric procedures that fail due to weight gain or insufficient weight loss is 20% (average: 21.1% ± 10.1%, range: 5.2-39, = 10). Revision of primary surgeries on average ranges from 2.5% to 18.4%, and depending on the procedure accounts for an additional cost between 50,000 USD per patient. Discussion. There was a significant deficit of the literature pertaining to the cost of revision surgery as compared with primary bariatric surgery. As such, the cycle of weight recidivism and bariatric revisions has not as of yet been introduced into any previous cost analysis of bariatric surgery
The Economic Impact of Weight Regain
Background. Obesity is well known for being associated with significant economic repercussions. Bariatric surgery is the only evidence-based solution to this problem as well as a cost-effective method of addressing the concern. Numerous authors have calculated the cost effectiveness and cost savings of bariatric surgery; however, to date the economic impact of weight regain as a component of overall cost has not been addressed. Methods. The literature search was conducted to elucidate the direct costs of obesity and primary bariatric surgery, the rate of weight recidivism and surgical revision, and any costs therein. Results. The quoted cost of obesity in Canada was 6.7 billion in 2013 CAD. The median percentage of bariatric procedures that fail due to weight gain or insufficient weight loss is 20% (average: 21.1%±10.1%, range: 5.2â39, n=10). Revision of primary surgeries on average ranges from 2.5% to 18.4%, and depending on the procedure accounts for an additional cost between 50,000âUSD per patient. Discussion. There was a significant deficit of the literature pertaining to the cost of revision surgery as compared with primary bariatric surgery. As such, the cycle of weight recidivism and bariatric revisions has not as of yet been introduced into any previous cost analysis of bariatric surgery
The soluble proteome of tobacco Bright Yellow-2 cells undergoing H2O2-induced programmed cell death
Plant programmed cell death (PCD) is a genetically controlled process that plays an important role in development and stress responses. Reactive oxygen species (ROS) are key inducers of PCD. The addition of 50 mM H2O2 to tobacco Bright Yellow-2 (TBY-2) cell cultures induces PCD. A comparative proteomic analysis of TBY-2 cells treated with 50 mM H2O2 for 30 min and 3 h was performed. The results showed early down-regulation of several elements in the cellular redox hub and inhibition of the protein repairâdegradation system. The expression patterns of proteins involved in the homeostatic response, in particular those associated with metabolism, were consistently altered. The changes in abundance of several cytoskeleton proteins confirmed the active role of the cytoskeleton in PCD signalling. Cells undergoing H2O2-induced PCD fail to cope with oxidative stress. The antioxidant defence system and the anti-PCD signalling cascades are inhibited. This promotes a genetically programmed cell suicide pathway. Fifteen differentially expressed proteins showed an expression pattern similar to that previously observed in TBY-2 cells undergoing heat shock-induced PCD. The possibility that these proteins are part of a core complex required for PCD induction is discussed
Hadronic Regge Trajectories: Problems and Approaches
We scrutinized hadronic Regge trajectories in a framework of two different
models --- string and potential. Our results are compared with broad spectrum
of existing theoretical quark models and all experimental data from PDG98. It
was recognized that Regge trajectories for mesons and baryons are not straight
and parallel lines in general in the current resonance region both
experimentally and theoretically, but very often have appreciable curvature,
which is flavor-dependent. For a set of baryon Regge trajectories this fact is
well described in the considered potential model. The standard string models
predict linear trajectories at high angular momenta J with some form of
nonlinearity at low J.Comment: 15 pages, 9 figures, LaTe
Human Gastrointestinal Juices Intended for Use in In Vitro Digestion Models
The aim of this study was to characterise the individual human gastric and duodenal juices to be used in in vitro model digestion and to examine the storage stability of the enzymes. Gastroduodenal juices were aspirated, and individual variations in enzymatic activities as well as total volumes, pH, bile acids, protein and bilirubin concentrations were recorded. Individual pepsin activity in the gastric juice varied by a factor of 10, while individual total proteolytic activity in the duodenal juice varied by a factor of 5. The duodenal amylase activity varied from 0 to 52.6Â U/ml, and the bile acid concentration varied from 0.9 to 4.5Â mM. Pooled gastric and duodenal juices from 18 volunteers were characterised according to pepsin activity (26.7Â U/ml), total proteolytic activity (14.8Â U/ml), lipase activity (951.0Â U/ml), amylase activity (26.8Â U/ml) and bile acids (4.5Â mM). Stability of the main enzymes in two frozen batches of either gastric or duodenal juice was studied for 6Â months. Pepsin activity decreased rapidly and adjusting the pH of gastric juice to 4 did not protect the pepsin from degradation. Lipase activity remained stable for 4Â months, however decreased rapidly thereafter even after the addition of protease inhibitors. Glycerol only marginally stabilised the survival of the enzymatic activities. These results of compositional variations in the individual gastrointestinal juices and the effect of storage conditions on enzyme activities are useful for the design of in vitro models enabling human digestive juices to simulate physiological digestion
Design and implementation of the Front End Board for the readout of the ATLAS liquid argon calorimeters
The ATLAS detector has been designed for operation at CERN's Large Hadron Collider. ATLAS includes a complex system of liquid argon calorimeters. The electronics for amplifying, shaping, sampling, pipelining, and digitizing the calorimeter signals is implemented on the Front End Boards (FEBs). This paper describes the design, implementation and production of the FEBs and presents measurement results from testing performed at several stages during the production process
- âŠ