392 research outputs found

    Discovery of Five New Pulsars in Archival Data

    Get PDF
    Reprocessing of the Parkes Multibeam Pulsar Survey has resulted in the discovery of five previously unknown pulsars and several as-yet-unconfirmed candidates. PSR J0922-52 has a period of 9.68 ms and a DM of 122.4 pc cm^-3. PSR J1147-66 has a period of 3.72 ms and a DM of 133.8 pc cm^-3. PSR J1227-6208 has a period of 34.53 ms, a DM of 362.6 pc cm^-3, is in a 6.7 day binary orbit, and was independently detected in an ongoing high-resolution Parkes survey by Thornton et al. and also in independent processing by Einstein@Home volunteers. PSR J1546-59 has a period of 7.80 ms and a DM of 168.3 pc cm^-3. PSR J1725-3853 is an isolated 4.79-ms pulsar with a DM of 158.2 pc cm^-3. These pulsars were likely missed in earlier processing efforts due to their high DMs and short periods and the large number of candidates that needed to be looked through. These discoveries suggest that further pulsars are awaiting discovery in the multibeam survey data.Comment: 12 pages, 2 figures, 2 tables, accepted to Ap

    Spelling in adolescents with dyslexia: errors and modes of assessment

    Get PDF
    In this study we focused on the spelling of high-functioning students with dyslexia. We made a detailed classification of the errors in a word and sentence dictation task made by 100 students with dyslexia and 100 matched control students. All participants were in the first year of their bachelor’s studies and had Dutch as mother tongue. Three main error categories were distinguished: phonological, orthographic, and grammatical errors (on the basis of morphology and language-specific spelling rules). The results indicated that higher-education students with dyslexia made on average twice as many spelling errors as the controls, with effect sizes of d ≥ 2. When the errors were classified as phonological, orthographic, or grammatical, we found a slight dominance of phonological errors in students with dyslexia. Sentence dictation did not provide more information than word dictation in the correct classification of students with and without dyslexia

    Signal Processing

    Get PDF
    Contains research objectives, summary of research and reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300Clarence J. LeBel Fun

    Analytic solutions for constant tension coil shapes

    Get PDF
    An analytical solution of the differential equation describing the shape of a flexible filamentary conductor (incapable of supporting bending stresses) in a toroidal magnetic field has been obtained. The solution derives from a series expansion of modified Bessel functions of integer order. The characteristics of toroidal field magnets for proposed tokamak devices are obtainable by term by term integration of the solution series. General expressions are given for the following coil characteristics: the conductor turn length, the solenoid inductance, the area enclosed by the coil and the coil support dimensions. For several particular cases of interest these coil characteristics are obtained as closed form analytical formula. (auth

    Disinfection of football protective equipment using chlorine dioxide produced by the ICA TriNova system

    Get PDF
    <p>Abstract</p> <p>Backround</p> <p>Community-associated methicillin-resistant <it>Staphylococcus aureus </it>outbreaks have occurred in individuals engaged in athletic activities such as wrestling and football. Potential disease reduction interventions include the reduction or elimination of bacteria on common use items such as equipment. Chlorine dioxide has a long history of use as a disinfectant. The purpose of this investigation was to evaluate the ability of novel portable chlorine dioxide generation devices to eliminate bacteria contamination of helmets and pads used by individuals engaged in football.</p> <p>Methods</p> <p>In field studies, the number of bacteria associated with heavily used football helmets and shoulder pads was determined before and after overnight treatment with chlorine dioxide gas. Bacteria were recovered using cotton swabs and plated onto trypticase soy agar plates. In laboratory studies, <it>Staphylococcus aureus </it>was applied directly to pads. The penetration of bacteria into the pads was determined by inoculating agar plates with portions of the pads taken from the different layers of padding. The ability to eliminate bacteria on the pad surface and underlying foam layers after treatment with chlorine dioxide was also determined.</p> <p>Results</p> <p>Rates of recovery of bacteria after treatment clearly demonstrated that chlorine dioxide significantly (p < 0.001) reduce and eliminated bacteria found on the surface of pads. For example, the soft surface of shoulder pads from a university averaged 2.7 × 10<sup>3 </sup>recoverable bacteria colonies before chlorine dioxide treatment and 1.3 × 10<sup>2 </sup>recoverable colonies after treatment. In addition, the gas was capable of penetrating the mesh surface layer and killing bacteria in the underlying foam pad layers. Here, 7 × 10<sup>3 </sup>to 4.5 × 10<sup>3 </sup>laboratory applied <it>S. aureus </it>colonies were recovered from underlying layers before treatment and 0 colonies were present after treatment. Both naturally occurring bacteria and <it>S. aureus </it>were susceptible to the treatment process.</p> <p>Conclusion</p> <p>Results of this study have shown that chlorine dioxide can easily and safely be used to eliminate bacteria contamination of protective pads used by football players. This could serve to reduce exposure to potential pathogens such as the methicillin-resistant <it>Staphylococcus aureus </it>among this group of individuals.</p

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle

    Mapping the fragmentation of acetylene with femtosecond resolution pump probe at LCLS using 2, 3, and 4 particle coincidences.

    No full text
    A three-layer delay line anode detector has been used in x-ray pump x-ray probe time-resolved measurement at LCLS. We used ~10 fs long pulses to initiate and probe ultrafast dynamics in the dication of acetylene. The dynamics are discerned from the temporal evolution of multi-particle coincidences

    Ultrafast isomerization initiated by X-ray core ionization

    No full text
    Rapid proton migration is a key process in hydrocarbon photochemistry. Charge migration and subsequent proton motion can mitigate radiation damage when heavier atoms absorb X-rays. If rapid enough, this can improve the fidelity of diffract-before-destroy measurements of biomolecular structure at X-ray-free electron lasers. Here we study X-ray-initiated isomerization of acetylene, a model for proton dynamics in hydrocarbons. Our time-resolved measurements capture the transient motion of protons following X-ray ionization of carbon K-shell electrons. We Coulomb-explode the molecule with a second precisely delayed X-ray pulse and then record all the fragment momenta. These snapshots at different delays are combined into a ‘molecular movie’ of the evolving molecule, which shows substantial proton redistribution within the first 12 fs. We conclude that significant proton motion occurs on a timescale comparable to the Auger relaxation that refills the K-shell vacancy

    Cell division and death inhibit glassy behaviour of confluent tissues

    Get PDF
    We investigate the effects of cell division and apopotosis on collective dynamics in two-dimensional epithelial tissues. Our model includes three key ingredients observed across many epithelia, namely cell-cell adhesion, cell death and a cell division process that depends on the surrounding environment. We show a rich non-equilibrium phase diagram depending on the ratio of cell death to cell division and on the adhesion strength. For large apopotosis rates, cells die out and the tissue disintegrates. As the death rate decreases, however, we show, consecutively, the existence of a gas-like phase, a gel-like phase, and a dense confluent (tissue) phase. Most striking is the observation that the tissue is self-melting through its own internal activity, ruling out the existence of any glassy phase.Comment: 9 pages, 10 figure
    corecore