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CONCEPTUAL DESIGN OF A DIVERTOR FOR A TOKAMAK EXPERIMENTAL POWER REACTOR

A. V. Georgievsky,* S. L. Gralnick, D. L. Jassby, D. M. Meade, L. G. Saksagansky, **
A. M. Stephanovsky,*** and F. H. Tenney
Plasma Physics Laboratory, Princeton University
Princeton, New Jersey 08540

Summary

A design for a Double-Null Poloidal Divertor for
a Tokamak EPR is presented which allows remote assem-
bly of the torus and utilizes a standard neutral pump-
ing and heat removal system.

I. Introduction

The present ExperiTental Power Reactor EPR de-
signs by the Oak Ridge, Argonne2 and General Atomic
groups consider reactors which approach the condition
of net electrical wower and as such reguice relatively
clean plasmas for burn times ~ 50~100 sec. Impurities
have a number of deleterious effects on tokamak fusion

reactors such as:
1. Enhanced radiation losses due to line radiation
from partially-stripped impurities, recombination
and bremsstrahlung radiation from fully stripped
impurities.

3

2. Reduction of reacting fuel ion density when the
total plasma pressure is limited.

3. Energetic neutral beams (~ 200 keV) used for
plasma heating are ionized by ion-impact ionization
which is multiplied by Z. This increased ioniza-
tion forces the beam to be deposited near the sur-
face for 2 = 3,or requires that the beam energy be
increased substantially for adequate beam penetra-

tion.

4. The current profile is also affected by the

presence of impurities. Low Z impurities at the

onter surface can causa the plasma column to shrink

and have a disruptive instability while high-2 im~
purities near the plasma center can cause the tem-
perature profiles to be hollow.

Power producing reactors operating at thermo-
nuclear ignition are seversly affected by impurities,
particularly high-2 impurities. A number of studies?
have indicated that high-2 impurity concentrations
{e.g- Mo) at nz/ne ~ 0.1 to 0.5% will significantly

increase the nt'required for ignition. If ignition is
not possible due to the presence of impurities, ener-
getic neutral beams can be used to produce reactions
and plasma heating. For low thermonuclear gain devices,
Q -~ 1, such as TFIR, the major effect of the impurities
is to limit neutral beam penetration. However, a beam
driven reactor would require Q ~ 5-10 to produce net
electrical powe£5 and in this case even low~Z impuri-

ties producing 2 = I njzjz/ne = 2-3 can significantly
increase the plasma current® and hence the cost of the

reactor required to achieve a given Q.
In addition to the impurity problem at the plasma-

wall boundary, the pumping of cold neutral gas in an
- iy ctor is.a significant orobl
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-that further study and optimization will be carj
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~ 1011 cm~3 ¢o recycle the escaping plasma. Al
neutral density in the neutral beam injection duj
must be s 10! cm~3 to avoid impact ionization of
neutral beam. Therefore the reguired pumping sp
the vacuum system is S ~ 108 liters/sec. The pu
orifice area required is 3
_4s 2% '].Oe'cm2
- ’ .

T Kv K ]
n

where K takes into account the reduction in cond
due to the length of the pumping lines between
vacuum vessel and pumps. Consider a pumping du;
tending radially outward all around the torus wil
height equal to the plasma diameter, in this cas
orifice area is A = 2mR2a = 5 x 10° cm? or roughi
order of magnitude less than the required pumpin
and the blanket area has been severely compromis
solution to the problem is to pump the escaping’
cles at a higher velocity e.g., 100 eV instead
temperature.

A viable sblution to both the impurity and
pumping problem appears to be a poloidal magnetj
vertor. 1In this report we describe a conceptual
of a divertor for an EPR device similar to the G
ANL EPR devices. The divertor design described H
the result of work carried out cduring a two wee?
change visit by Soviat scientists to the Princd
Plasma Physics Laboratory and as such represent
the initial thoughts on an EPR divertor and it

in the future.

II. Tokamak Reactor Divertor Design’

A. General Requirements. The primary ;equf.
for a tokamak reactor divertor design can be
as follows:

1. a magnetic configuration and divertorf

that provide the impurity reduction and pi

speed required for reactor operation, 4
*

2. a magnetic configuration that providesg
librium and stability for the confined ha

a
3. a divertor burial chember and pumping ]
that is capable of removing the plasma en
particle flux, and 3

4. a configuration with superccnducting ;
coils that are shielded from the neutrong

1y the entire assembly capable of remote nq;
destructive disassembly. i

The proposed configuration is a Double-Ny
Poloidal Divertor which provides a reacting pl
is essentially identical to the ORNL EPR desig
imilax the ANL EPR and Russian T-20 desiﬁ
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- 1011 em=3 to recycle the escaping plasma. Also the
neutral density in the neutral beam injection ducts
must be € 1011 em™3 to avoid impact ionization of the
neutral beam. Therefore the reguired pumping speed of
the vacuum system is S ~ 108 liters/sec. The pump
orifice area required is

¢ 6
4s 2 x 10 cm
kv T K £ w

2

where K takes into account the reduction in conductancs
cdue to the length of the pumping lines between the
vacuum vessel and pumps. Consider a pumping duct =u-
tending radially outward all around the torus with i
height equal to the plasma diameter, in this case the
orifice area is A = 2mR2a = 5 x 10° cm? or roughly an
order of magnitude less than the required pumping area,
and the blanket area has been severely compromised. Ths
solution to the problem is to pump the escaping parti-
cles at a higher velocity e.g., 100 eV instead of room
temperature.

A viable solution to both the impurity and neutral
pumping problem appears to be a pcloidal magne:ic di=-
vertor. In this report we describe a conceptual design
of a divertor for an EPR device similar to the ORNL ard
ANL EPR devices. The divertor design described here is
the result of work carried out during a two weok ex-
change visit by Soviet scientists to the Princeton
Plasma Physics Laboratory and as such represents only
the initial thoughts on an EPR divertor and it is hoped
that further study and optimization will be carriz=d cus
in the future.

II. Tokamak Reactor Divertor Design

A. General Requirements. The primary requirements
for a tokamak reactor divertor design can be summarized
as follows:

1. a magnetic configuration and divertor action
that provide the impurity reduction and pumping
speed required for reactor operatioa,

+

2. a magnetic configquration that provides equi-
librium and stability for the confined hot plasma,

3. a divertor burial chamber and pumping system
that is capable of removing the plasma energy and
particle flux, and

4. a configuration with superconducting divertor
coils that are shielded from the neutrons and with

1} the entire assembly capable of remote non-
destructive disassembly.

The proposed configuration is a Double=Null
Poloidal Divertor which provides a reacting plasma that
is essentially identical to the ORNL EPR design and is

similar to the ANL EPR and Russian T-20 design, Table I. .
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1. Enhanced radiation losses due to line radiation
from partially-strippad impurities, recombination
and bremsscrahlung radiation from fully stripred
impurities.

2. Reduction of reacting fuel ion density when the
total plasma pressurs is limited.

3. Energetic neutral beams (- 200 keY¥) used for
plasma heating are Lonx-ed by ion-impact ionization
whizh is multiplied by Z. This increased ioniza-~
tion forces the beam to be deposited near the sur-
face for 2 = 3,or reguires that the heam energy he
incrzased subscantially for adeguate beam penatra-
tion.

4. The current profile is alsc affectaed by the
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ties producing Zat nJ"len = 2-3 can significantly

increaase the plasma current® and hence the cost of the
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25% of
and would cause zhe plasma density to double in

=~ 4 particle confinement times and thereby causing the
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Also we have chosen to consider a 50 kG
field since this allows a 7 MA plasma current
1-2 and q(a) & 4 in our design. This large pk
current along with imgurity reducticn by the
increases the prospects for operating the reac|
ignition or at high gain near ignition and the
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where K takes into account the reduction in conductance K
Cue to the length of the pumping lines between the
vacuum vessel and pumps. Consider a pumping duct ox- o
tending radially outward all around the torus with a
height equal to the plasma diameter, in this case the
orifice area is A = 27R2a = 5 x 10° cm2 or roughly an
order of magnitude less than the reguired pumping area,
and the blanket areaz has been severely compromised. The
solution to the problzm is to pump the escaping parti-
cles at a higher velocity e.g., 100 eV instead of room
temperature.

A viable sblution to both the impurity and neutral
pumping problem appears to be a pcloidal magnetic di-
vertor. In this report we describe a conceptual design
of a divertor for an EPR device similar to the ORNL and
ANL EPR devices. The divertor design described here is
the result of work carried out during a two week ex-
change visit by Sovizt scientists tc the Princeton
Plasma Physics Laboratory and as sucn reprasents only
the initial thoughtz on an EPR divertor and it is hoped
that further study and optimization will be carrizd ous
in the future.

II. Tokamakx Reactor Divertor Design

A. General Requirements. The primary requirements
for a tokamak reactor divertor design can be summarized
as follows:

1. a magnetic configuration and divertor action
that provide the impurity reduction and pumping
speed required for reactor operation,

.

2. a magnetic configuration that provides equi~
librium and stability for th2 confined hot plasma,

3. a divertor burial chamber and pumping system
that is capable of removing the plasma energy and
particle flux, and

4. a configuration with superconducting divertor
coils that are shielded from the neutrons and with

1y the entire assembly capable of remote non-
destructive disassembly.

The proposed configuration is a Double-Null
Poloidal Divertor which provides a reacting plasma that
is essentially identizal to the ORNL EPR design and is
similar to the ANL EPR and Russian T-20 design, Table I.
We have choser to keep the plasma size fixed so that
comparisons betwesn non-divertor EPR designs and our
divertor design can be made in terms of engineering
trade-offs versus plasma purity and pumping at the same
plasma parameters (I, a, R, and BT).

Also we have chosen to ccnsider a 50 kG toroidal
field since this allows a 7 MA plasma current for q(o)=
1-2 and g(a) = 4 in our design. This large plasma
current along with impurity reduction by the divertor
increases the prosgects for operating the reactor at
ignition or at high gain near ignition and thereby
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achieving substantial thermonuclear power perhaps even

net power output.

The Tokamak Reactor Divertor design is shown in

Fig. 1. The main features of the design are:

1. Double-Null poloidal divertor inside the toroidal
field coils with a slightly "D" shaped confined

plasma with a 7MA plasma current,

2. extended Jivertor exhaust channels and pumping
chambers located at the outer surface of the torus
allowing a standard pumping and heat removal system,

and

3. a divertor coil system with zero net ampere turrs,
allowing the poloidal coils to be placed inside the
toroidal coil without tnpologically linking the
toroidal field coil. Tuis feature allows remote

disassembly of the entire coil system.

B. Divertor Physics Reguirements. While many of the
detailed plasma physics questions concerning the di-
vertcr scrape-off region are unanswered at the present
time, we can nonetheless make reasonable estimates of
the two most important parameters of the divertor

scrape-off;

1. the width ¢+ the divertor exhaust channels and

2. the length of the exhaust channels.

A shielding divertor would have a moderately wide
(~ 5 cm) dense (5 x 1012 cm~3) plasma which ionizes in-
coming impurity atoms and sweeps the resultant impurity
ions into the divertor burial chambers. A shielding
divertor allows neutral recycling and refueling at the
surface of the confined plasma with negligible impurity
influx and therefore permits the long burn times re-
quired for EPR. The preseut design allows a 20 cm
scrape-off channel which should easily provide for a
shielding divertor with essentially no plasma wall cor-

tact.

The length of the exhaust channels was designed to
be the maximum allowed inside the toroidal field coil
bore so as to minimize back flow of neutral gas by en-
hancing the plasma pumping effect and increasing the
pumping area. Also the neutralizer plates are at the
largest possible major radius with a lirge surface area

thereby reducing the energy removal problem.

C. Poloidal Field Design.

1. General Considerations. The proposed design com-
bines favorable features of both the long exhaust
channel Single-Null Divertor in the Princeton Reference
Design? and the short channel Double-Null Divertor in
the Wisconsin UMAK-1 design,8 that is the design has
long exhaust channels with a stable plasma column
placed in the high toroidal field region near the in-
side bore of the toroidal field coil. Since the di-
vertor poloidal field design determines the requirements
for all other systems pumping, mechanical structure and
toroidal field coil size, considerable effort during
the exchange period was directed toward a study of the
poloidal field configuration. While a number of para-
meters remain to ke optimized, this design should en-
able some engineering design estimates to be made.

2. Results of Poloidal Magnetic Field Studies. The,

quences have been considered.

the torus. The negative coil at R = 7.4, 2
vides most of the eguilibrium field, pushes:
null point toward a smaller major radius fo
slightly "D" shaped plasma, and constricts
exhaust channel while its positive return ¢
R = 8.4, 2 = 5.1 pulls both exhaust channel
outer part of the torus. These internal co
the divertor field and 75% of the vertical
guired for plasma equilibrium, the balance
librium field is produced by an adjustable
The filamentary calctlations ware sufficien
for the positioning of divertor channels and
however for the high Be (Be ~ 2) and low as

(A = R/a ~ 3) plasma, self-consistent MHD e
calculations were used to accurately determ
plasma shape.

L]
3. Plasma Current Startup Considerations. !
control is also essential during thé plasma
phase. This can be accomplished magneticall

a. initiating the plasma discharge at a
null in the poloidal field located away
lic limiters,

K. creating an exp-nding magnetic limiter
duces the plasma-wall interaction due to
related MHD instabilities, and

c. providing proper divertor action Qurin
startup. ’

In this reference design three possible star

a. Fixed flux plot. The DF and EF curren
creased proportional to the plasma curren
maintains divertor action and separatrix
during plasma startup but does not provide
panding magnetic limiter to e¢liminate the |
effect. In this scheme, 43wolt-sec is ge
the DF and EF fields.

b. Fixed DF-hexapnle null. This mode is

to the startup sequence in PDX. The DF
fixed in time; at t = 0, the EF current i
which generates a hexapole null at R = 6.
the plasma current increases, the EF ¢oil]
driven toward - 2.8 MA providing the prope
rium transverse field. This mode provide
sec capability. Studies of flux plots d
up for this simple programming show poor

throat tracking, clearly we have not yet
the present configuration for startup.

c. Fully programmed poloidal coils. Futus
will involve programming all coil systems]
EF. Since in a reactor, the OH coil curr
nearly constant during the burn phase, we;
vestigate coupling the OH transverse fiel
poloidal field design. :

D. Engineering Description.

l. Poloidal coil design. An important
this divertor EPR reference design is thej
able internal poloidal coil. The interna
in the form of 180° loops which carry pos
rent half-way around the torus, cros
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L Magnetic Field Studies. The

the torus. The negative coil at R = 7.4, Z2 = 2,5 pro-
vides most of the equilibrium field, pushes the poloidal
nuil point toward a smaller major radius forming a
slightly "D" shaped plasma, and constricts the lower
exhaust channel while its positive return current at

R = 8.4, Z = 5.1 pulls both exhaus* channels toward the
outer part of the torus. Thase internal coils generate
the divertor field and 75% of the vertical field re-
quired for plasma egquilibrium, the balance of the equi-
libxium field is produced by an adjustable coil EF1l.
The filamentary calculations were sufficiently accurate
for the positioning of divertor channels and shielding.,
however for the high BB (8e ~ 2) and low aspect ratio

(A = R/a ~ 3) plasma, self-consistent MHD equilibrium
calculations were used to accurately determine the
plasma shape.

’
3. Plasma Current Startup Considerations. Impurity
control is also essential during thé plasma startup
phase. This can be accomplished magnetically by:

a. initiating the plasma discharge at a multipole
null in the poloidal field located away from metal-
lic limiters,

R. creating an expanding magnetic limiter that re-
duces the plasma-wall interaction due to skin-effect
related MHD instabilities, and

¢. providing proper divertor action during plasma
startup.

In this reference design three possible startup se-
quences have been considered.

a. Fixed flux plot. The DF and EF current: are in-
creased proportional to the plasma current. This
maintains divertor action and separatrix positioning
during plasma startup but does not provide an ex-
panding magnetic limiter to eliminate the skin
effect. In this scheme, 43voltsec is generated by
the DF and EF fields.

b. Fixed DF-hexapole null. This mode is very similar
to the startup sequence in PDX. The DF currents are
fixed in time; at t = O, the EF current is + 10.4 MA
which generates a hexapole null at R = 6.9 m. As
the plasma current increases, the EF coil current is
driven toward ~ 2.8 MA providing the proper equilib-
rium transverse field. This mode provides 76 volt-
sec capability. Studies of flux plots during start-
up for this simple programming show poor divertor
throat tracking, clearly we have not yet optimized
the present configuration for startup.

¢. Fully programmed poloidal coils. Future studies
will involve programming all coil systems OH, DF and
EF. Since in a reactor, the OH coil current is very
nearly constant during the burn phase, we will in-
vestigate coupling the OH transverse field into the
poloidal field design.

D. Engineering Description.

i. Poloidal coil design. An important feature of
this divertor EPR reference design is the demount-
able internal poloidal coil. The internal coils are
in the form of 180° loops which carry positive cur-
rent half- around the tor




! toroidai coil without topoloéicall; linking the

toroidal field coil. This feature allows remote
disassembly of the entire coil system.

plasma shape.

[}
3. Plasma Current Startup Considerations. I
control is also essential during thé plasma star
phase. This can be accomplished magnetically by

B. Divertor Physics Requirements. While many of the

detailed plasma physics questions concerning the di-
vertor scrape-off region are unanswered at the present
time, we can nonetheless make reasonable estimates of
the two most important parameters of the divertor
scrape-off;

1. the width of the divertor exhaust channels and
2. the length of the exhaust channels.

A shielding divertor would have a moderately wide
(~ 5 cm) dense (5 x 1012 cm~3) plasma which ionizes in-
coming impurity atoms and sweeps the resultant impurity
ions into the divertor burial chambers. A shielding
divertor allows neutral recycling and refueling at the
surface of the confined plasma with negligible impurity
influx and therefore permits the long burn times re-
quired for EPR. The present design allows a 20 cm
scrape-off channel which should easily provide for a
shielding divertor with essentially no plasma wall con-
tact.

The length of the exhaust channels was designed to
be the maximum allowed inside thc toroidal field coil
bore so as re minimize bhack flow of neutral gas by en-
hancing the plasma pumping effect and increasing the
pumping area. Also the neutralizer plates are at the
largest possible major radius with a large surface area
thereby reducing the energy removal problem.

C. Poloidal Field Design.

1. General Considerations. The proposed design com-
bines favorable features of both the long exhaust
channel Single-Null Divertor in the Princeton Reference
Design’ and the short channel Double-Null Divertor in
the Wisconsin UMAK-1 design,8 that is the design has
long exhaust channels with a stable plasma column
placed in the high toroidal field region near the in-
side bore of the toroidal field coil. Since the di~
vertor poloidal field design determines the reguirements
for all other systems pumping, mechanical structure and
toroidal field coil size, considerable effort during
the exchange period was directed toward a study of the
poloidal field configuration. While a number of para-
meters remain to be optimized, this design should en-
able some engineering design estimates tc be made.

2. Results of Poloidal Magnetic Field Studies. The
configuration shown in Fig. 1 satisfies the general
criteria stdated above. The net vertical field for
toroidal plasma equilibrium is in agreement with the
magnitude required by the Shafranov formula and has
radial positional stability. However, the vertical
positional stability is probably marginal and further
optimization is required. Each cf the poloidal coils
has a specific function. The positive coil (R = 5.4,
Z = 5.1) produces the primary divertor stagnation point
at R = 5.4, Z = 3.1, while its return current at
R = 5.4, 2 = 7.2 hends the exhaust channel down from
the toroidal coil and diverts it toward the outside of

In this reference design three possible startup
gquences have been considered.

a. initiating tiwe plasma discharge at a multip
null in the poloidal field located away frcm m
lic limiters,

. creating an expanding magnetic limiter tha
duces the plasma-wall interaction due to skin
related MHD instabilities, and

c¢. providing proper divertor action during plv
startup.

a. Fixed flux plot. The DF and EF currents an
creased proportional to the plasma current.
maintains divertor action and separatrix posit
during plasma startup but dees not provide an
panding magnetic limiter to eliminate the ski
effect. In this scheme, 43volt-sec is generaw
the DF and EF fields. :

b. Fixed DF-hexapole null. This mode is very:
to the startup sequence in PDX. The DF curr
fixed in time; at t = 0, the EF current is +
which generates a hexapole null at R = 6.9 m.
the plasma current increases, the EF coil cur
driven toward - 2.8 MA providing the proper
rium transverse field. This mode provides 76
sec capability. Studies of flux plots during]
up for this simple programming show poor dive
throat tracking, clearly we have not yet opti
the present configurgtion for startup.

c. Fully programmed poloidal coils. Future s
will involve programming ail coil systems OH,
EF. Since in a reactor, the OH coil current
nearly constant during the burn phase, we wil
vestigate coupling the OH transverse field in
polocidal field design.

D. Engineering Description.

i. Poloidal coil design. An important feat
this divertor EPR reference design is the de
able internal poloidal coil. The internal co
in the form of 180° loops which carry positiwg
rent half-way around the torus, crossover and:
as negative current. This feature allows re
disassembly and zero coupling to the OH field
small coupling to the plasma field. The cros
design requires some care since they are subj
large forces, interfere with plasma motion in
divertor and generate magnetic field errors. |
problems appear to he scluble and are discus
more detail in the appropriate sections. Wit
present design we have only 3 types of DF, EF
The ohmic heating coils are similar to those |
ORNL and ANL design and are located outside
toroidal field coil.
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3. Plasma Current Startup Considerations. Impurity

control is also essential during the plasma startup
phase. This can be accomplished magnetically by:

a. initiating the plasma discharge at a multipole
null in the poloidal field located away from metal-~
lic limiters,

R. creating an expanding magnetic limiter that re-
duces the plasma-wall interaction due to skin-effect
related MHD instabilities, and

c. providing proper divertor action during plasma
startup.

In this reference design three possible startup se-
quences have been considered.

a. Fixed flux plot. The DF and EF currents are in-
creased preportional to the plasma current. This
maintains divertor action and separatrix positioning
during plasma startup but does not provide an ex-
panding magnetic limiter to eliminate the skin
effect. In this scheme, 43 volt-sec is generated by
the DF and EF fields.

b. Fixed DF-hexapole null. This mode is very similar
to the startup sequence in PDX. The DF currents are
fixed in time; at t = 0, the EF current is + 10.4 MA
which generates a hexapole null at R = 6.9 m. As
the plasma current increases, the EF coil current is
driven toward - 2.8 MA providing the proper equilib-
rium transverse field. This mode provides 76 volt-
sec capability. Studies of flux plots during start-
up for this simple programming show poor divertor
throat tracking, clearly we have not yet optimized
the present configurgtion for startup.

¢. Fully programmed poloidal coils. Future studies
will involve programming all coil systems OH, DF and
EF. Since in a reactor, the OH coil current is very
nearly constant during the burn phase, we will in-
vestigate coupling the OH transverse field into the
poloidal field design.

D. Engineering Desciption.

i. Poloidal coil design. An important feature of
this divertor EPR reference design is the demount-
able internal poloidal cecil. The internal coils are
in the form of 180° loops which carry positive cur-
rent half-way around the torus, crossover and return
as negative current. This feature allows remote
disassembly and zero coupling to the OH field and
small coupling to the plasma field. The cross-over
design requires some care since they are subject to
large forces, interfere with plasma motion into the
divertor and generate magnetic field errors. These
problems appear to be soluble and are discussed in
more detail in the appropriate sections. With the
present design we have only 3 types of DF, EF coils.
The ohmic heating coils are similar to those of the
ORNL and ANL design and are located outside the
toroidal field coil.




2. Poloidal coil conductor. We considar the DF ceoils
to be fabricated from stabilized NbTi cable similar
to that described by ORNL or ANL. However, space
considerations at the DF-l coil lead ys to consider
a high current density coil in which the hoop stress
is taken by an external stainless steel ring. For
DF-1, we assume a core current density of 3 kA/cm2
with a 10 cm dewar structure to arrive at the sizes
illustrated in Fig. 1. Clearly, this is an area
where careful expert design is required. The DF-2
and EF-1 coils have less stringent requirements and
the coils shown have 2 ka/cm2.

3. Poloidal coil support structure. A poloidal
structure problem is the support for the vertical
forces on DF~1l, the net force on the lower
(positive) half-turn of DF-1 is 5 x 10% 1bs.
force can be supported by a cantilevered steel
plate (shown in cross-section in Fig. 1) with a
modest deflection of = 1 cm for a 50 cm thick plate
clamped near the vacuum wall. As mentioned pre-
viously, the hoop force of the superconducting

coil will be taken up on a stainless steel backing
ring.

4. Toroidal field coil. The torgque on the toroidal
field (TF) coils due to the divertor field should

also be investigated as well as the effect of the

time changing poloidal fields on the superconduct-
ing toroidal field coils.

This

5. Vacuum system. The pumping system for the pro-
posed reactor must handle a particle throughput of
= 1022 particles/sec and maintain a neutral pres-
sure of = 1073 torr at the surface of the plasma.
Since the plasma in the divertor channels behaves
somewhat as a diffusion pump, the neutral pressure
in the divertor chambers is expected to be = 5x10~3
torr. We propose to supply the required pumping
speed of = 107 %&/sec for D°, 7° with internal cryo-
pumps having an area of 3-5x102m2. Helium will be
pumped with external compression pumps having a
speed of 5x10° &/sec.

One of the important features of the present de-
sign is that no special technology, such as flowing
liquid lithium, is necessary to remove the thermal
energy of the plasma flowing into the divertor. The
powexr density on the neutralizer plate is:300w/cm2
for flat plates and can be reduced to ~ 150 w/cm?
with a corrugated plate. Low power densities such
as this can be handled by "standard" cooling tech-
niques.

Conclusion

The proposed divertor design, appears to be a
viable solution to the need for impurity control and
neutral pumping in tokamak reactors and as such can be
used for scoping a variety of engineering problems
peculiar to divertors. However, the present design
does not represent an optimized system with regard to
device cost. The proposed toroidal field coil could
probably be reduced in size from an inside height of
7.8 m to 6.5 m and from an outer midplane radius of
12.8 m to 11.3 m without seriously deteriorating the
divertor performance. In this latter case, the toroi-
dal field coil for the divertor EPR is only slightly
larger than the toroidal coils for the ANI and ORNT.

\ T-20 ORNL ANL
a(m) 2 2.25 2.1
R(m) 5 6.75 6.25
B, (kG) ’ 35 48 34
I(Ma) . 6 7.2 4.8
gq(o)
qla) 2.3 2.5 2.5
Bg 1 2 2.2
TP(S) 2 ~2 2
T, (s) 20 100 20-50
Ppogs M) 50 ~100 130
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3. Poloidal coil support structure. A poloidal
structure problem is the support for the vertical
forces on DF-~1, the net force on the lower
(positive) half-turn of DF-1 is 5 x 10% 1bs. This
force can be supported by a cantilevered steel
plate (shown in cross-section in Fig. 1) with a
modest deflection of = 1 cm for a 50 cm thick plate
clamped near the vacuum wall. As mentioned pre-
viously, the hoop force of the superconducting
coil will be taken up on a stainless steel backing
ring.

5. M. Nozawa and D. Steiner, Oak Ridge National 1a
tory Rep. ORNL TM-4421 (1974).
6. R. W. Conn and J. Kesner, Nuc. Fusion 15, 775 (19

7. R. G. Mills, Prlnceton Plasma Physics Laboratory
Rep. MATT-1050 (1974)".

8. G. L. Kukinski, et al, University of Wisconsin,
Nuclear Enginsering Rep. UW FDM-68 (1973).
TABLE I

EPR Parameters

4. Toroidal field coil. The torgue on the toroidal
field (TF) coils due to the divertor field should A T-20 ORNL ANL CCCP/US
also be investigated as well as the effect of the a(m)} 2 2.25 2.1 ~2"
Fime chapging goloida} fields on the superconduct- R(m) 6.75 6.25 2_25
ing toroidal field coils. B
5. Vacuum system. The pumping system for the pro- BT(kG) 35 48 34
posed reactor must handle a particle throughput of I(MA) . 6 7.2 4.8
x 1022 particles/sec and maintain a neutral pres- (o)
sure of = 1075 torr at the surface of the plasma. 4
Since the plasma in the divertor channels behaves g(a) 2.3 2.5 2.5
somewhat as a diffusion pump, the neutral pressure 8 1 2 2.2
in the divertor chambers is expected to be z 5x107 5} :
torr. We propose to supply the required pumping Tp(s) 2 ~2 2
speed of = 107 %/sec for D°, T° with intermal cryo-
pﬁmps having an area of 3- leozm2 Helium will be Tb(s) 20 100 20-30
50 ~100 130 ~E80

pumped with external compression pumps having a PLOSS(MW)
speed of 5x105 %/sec.

One of the important features of the present de-
sign is that no special technology, such as flowing
liquid lithium, is necessary to remove the thermal ’
energy of the plasma flowing into the divcrtor. The
power density on the neutralizer plate is=x 300w/cm
for flat plates and can be reduced to ~ 150 w/cm?
with a corrugated plate. Low power densities such
as this can be handled by "standard" cooling tech~
niques. .

Conclusion

The proposed divertor design, appears to be a
viable solution to the need for impurity control and
neutral pumping in tokamak reactors and as such can be
used for scoping a variety of engineering problems
peculiar to divertors. However, the present design
does not represent an optimized system with regard to
device cost. The proposed toroidal field coil could )
probably be reduced in size from an inside height of
7.8 m to 6.5 m and from an outer midplane radius of
12.8 m to 11.3 m without seriously deteriorating the
divertor performance. In this latter case, the toroi-
:dal field coil for the divertor EPR is only slightly
~larger than the toroidal coils for the ANL and ORNL
EPR designs.
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Figure Caption

Fig. 1. Cross-sectional view of the tokamak EPR
divertor design showing the toroidal field (TF) coil,
divertor field (DF) coils and equilibrium field (EF)
coil.
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